A

ox0 i

COBOL
Programmer’s Guide

TEXAS INSTRUMENTS

© 1980, 1982, 1983, 1985, Texas Instruments Incorporated. All Rights Reserved.
Printed in U.5.A.
No part of this publication may be reproduced, stored in a relrieval system, or transmitted, in any form or

by any means, eleclronic, mechanical, photocopying, recording, or otherwise, without the prior written
permisslon of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

DX10 COBOL Programmer’s Guide (2270521-9701)

Originallssue i, December 1980

Revision. i e May 1982
Changel e October 1983

Revision. o March 1985

The total number of pages in this publication is 298.

The computers, as well as the programs that Tl has created to use with them, are tools that
can help people better manage the information used in their business; but tools—including
Tl computers—cannot replace sound judgment nor make the manager's business
decisions.

Consequently, Tl cannot warrant that Its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

\

(J

Preface

This manual contains informaiion about the Texas Instruments version of COBOL {COmmon
Business Oriented Language), which Is designed to operate on Texas Instruments computers.
This information supports the experienced programmer in developing COBOL programs intended
for execution under the DX10 Operating System. For additional descriptions of COBOL, refer to
the COBOL Reference Manual.

This manual contains the following sections and appendices:
Section

1 Introduction — Describes DX10 as it relates to COBOL and the operating system
environment. This introduction also includes an overview of the processes necessary to
create and execute a COBOL program {task) and includes notations that are used to
describe commands in this manual.

2 Operating System Concepts — Describes features related to program development.
Includes description of interactive tasks and batch execution, the System Command
Interpreter (SCY), directory and file structure, pathnames, access names, and synonyms.

3 Building a COBOL Source Program Module — Discusses how to build a COBOL
program source module, beginning with directory and file development, and how to use
the Text Editor utllity. -

4 Compilation — Explains how a COBOL source program module is compiled and
dlscusses compiler completion codes and error messages.

5 Link Edit — Explains the link editing process, COBOL segmentation, overlays, and
installation of COBOL task and procedure segments. Includes information on memory
mapping and the COBOL run-time interpreter.

'6 Execution — Discusses execution of COBOL object modules, linked object modules,
and program images. Provides necessary SCl commands, completion codes, and error
messages.

7 Debugging — Discusses COBOL debugging for COBOL routines and the operating
system debugging for assembly language object modules that are linked to a COBOL
object module.

/ 8 Calling Subroutines — Describes the process for calling COBOL and assembly
j language modules.

9 Interfacing to Productivity Tools — Introduces the productivity tools that can interface
with COBOL and explains how these tools can be linked with COBOL object modules.

2270521-9701 v

Preface

Appendix

10

1k

12

13

A

Using SCI Command Procedures to Execute COBOL Tasks — Describes how to design a
system to interact with application environment processors and SCI.

COBOL Device-Dependent Altributes — Describes the ACCEPTIDISPLAY command
option that allows access to function keys, low volume Input/Output (1/10), and graphic
HO.

Error Processing — Describes the COBOL file status data item and error processing
under program control.

- Optimizing Run-Time Performance — Discusses various ways to optimize COBOL code.

Keycap Cross-Reference — This appendix contains specific keyboard information to
help the user identify individual keys on any supported terminal.

COBOL Compiler Error Messages — Lists COBOL user and system compiler error
messages.

COBOCL Run-Time Error Messages — Lists COBOL user and system run-time error
messages.

COBOL Subroutine Library Package — Describes COBOL subroutine library modules.

COBOL Compiler Listing Format — Gives example of the results from using the M, O,
and X options on the COBOL compiler.

in addition to the software manuals shown on the frontispiece, the following documents contain
information related to this manual:

vl

Title Part Number
COBOL System Design Document 2250953-9901
SCI: A Self-Study Approach to Writing Command 2267649-0001

Procedures and Batch Streams

22705219701

Q)

Ty

oy

Contents

Paragraph

[N A S N N e N
o oo
0w

N —

2.1

2.2
2.2.1
222
23
231
2.3.2
233
2.3.3.1
2332
234
2,3.4.1
23.4.2
23.43
2344
24
241
24.2
243
25

26

2.7
2.7.1
27.1.1
2.7.1.2
2.17.2
2.7.2.4

2270521-9701

Title Page
1 — Introduction

OB ..ot e e e e e e 1-1
A COBOL Program Development Overviewcoiiiininrnnrrnnns. 1-1
SCl Command Prompt Format andNotationo iiei ... 1-8
Command NamIEttt e e e e e e 1-8
Command Prompts Returned i s 1-9
Typeof Response Expected i e, 19
Inltial Values e e e 1-9
Default Valueso i i e e e e 1-9

2 — Operating System Concepts
LT 1 T LT R 2-1
Task SIrUGIUTE o i e e e e 21
Interactive Tasks i i i i it i e e e e e 2-1
BatCh Streams e e e 2-1
UsSiNG Sl . i e e e e e e e 2-2
SOl DesCripliON . i e e e e 2:2
Entry of SCl Commands inVDTMode,ottt i, 22
Examples of Using SCl i i i e 2.2
The Show Background Status(SBS)Commandcc0vnunn. 2-2
The List Directory (LD} Commandt ivitiiniiiiii i inanennn 2-3
BatchUse of SO it i et e et e e 2-3
Batch Stream Format. i e e 2-4
Batch Command Formal i i i e ettt iaiairs e 2-4
Interactive Executionof BatchStreams 2-5
Entering Programs From SequentialDevices it 25
Directory and Flle StructUreo i i e i e e e et 2.6
Establishing Volume Names i it it cin i s 26
Establishing Directories it i i i e e e 2-6
Establishing Files o i i i e e e e e 2-7
Pathnames and ACCessS Names ittt it ettt it cae e 2-8
1T 11 29
FIle Ty PeS . o i e e e e e e e e 2-9
Sequential Files i i e e e e e 29
Sequential File Aftributes, i 2-10
Creating Sequential Files i i i it e 2-10
Relative Becord Files i i it it et i e 2-14
Relative Record Attributes i i e 2-14
vii

Conlents

Paragraph

2.7.2.2
2.7.23
273

3.1
3.2
3.3
3.3.1
3.3.2
34
3.5

4.1
4.2
4.2.1
422
4.3
4.4
. 45
4.6

5.1

5.2
5.2.1
5.2.2
5.3
5.4
5.4.1
5.4.1.1
5.41.2
5.4.2
5.4.3
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
56.6

viii

Title

Creating Relative Record Files it
Special Types of Relative Record Files
KeylndexedFiles(KIF) oo,

3 — Building a COBOL Source Program Module

General. ... o e e e e et e
Directoryand File Preparationo iii it
Alternate Directory Structuresot e i i

Organizationby Programs it ii i iiannnnes

Organizationby Flle Typeo i i it
Creating DirectoriesandFiles o i,
Building the Program Module Viathe Text Editor

4 — Compilation

7= 1= - |
Compiler Executionottt

Execute COBOL Compiler in Foreground (XCCF)

Execute COBOL Compiler in Background (XCC)
Compiler Output e e e e e
CompilerCompletionCodes i inian
CompilerErmorMessageso vt in e i ettt a i an e
CompilerLimitations ittt

17 1 1= - |
ObjectModules ... oo e et e
Differences in the Treatment of Shareable Vs. Reentrant Modules
COBOLObJectModulesovvvii i it i i
Program Mappingcovir it iiitan i tn i
ProgramFiles i
LT =Ta] 117111 P
Task SegmMeENntS it ittt it e
ProcedureSegmentst
OVErlaYS ... i e e ia e e e
COBOL Module Segmentation.ot
Creating Linked ObjectModules,
CreatingProgramlImages. ottt e
COBOLRUNTIME ..ottt e i ce e e i it aanns
Linking a Single Procedure Segment With a Single Task Segment
Linking a Single Procedure Segment With Multiple Task Segments
Linking Two Procedure Segments With a Single Task Segment

Linking Two Procedure Segments With Multiple Task Segments

OverlayStructures.. i i i i i e

2270521-9701

Paragraph

5.6.7
5.6.8

5.6.9

5.6.10
57
5.8

8.1
6.1.1
6.2
8.2.1
6.2.2
6.3
6.4
6.4.1
6.4.2
6.5
6.6

7.1

7.2
7.21
722
7.2.2.1
7.222
7223
7.22.4
7225
7.2.26
7.2.2.7
7.2.2.8
7229
7.2.2.10
7.3

8.1
'8.2
8.3

2270521-9701

Contents

Title Page
SharingMain ProgramModuleo i e 5-24
Linking a Single Procedure One Segment and Multiple Procedure Two
SEaMENES ..ttt i i e i e i e e e 5-24
Linking a Single Procedure Segment With a Single Task Segment on a User
ProgramFileo i e e e e 5-26
Installing Program Images From aRelativeFile................. 5-26
Linking Librariesottt i i e e e 5-28
Linkingkimifatlonso e i i s 5-29

€T =] 2 1= 1 [6-1
Use of aSynonym inthe COBOLSelectClauset 6-1
Object Modules EXeCUION vt it et ara e 6-1
Execute COBOL Program in Foreground (XCPF) viiiaian, 6-2
Execute COBOL Programin Background (XCP} vt 6-4
Execution Completion Codes and Run-Time Error Messages 6-4
ProgramImage Execution oo i i i e 6-5
Execute COBOL Task in Foreground (XCTF}o an, 6-5
Execute COBOL Taskin Background (XCT)t ii it iennns 6-7
Execution Completion Codes and Run-Time ErrorMessages 6-7
Program Termination Messageso it 6-8
7 — Debugging
DebUg MoOde. .. it e e e et e e e 7-1
DebuggingaCOBOLModule i it it e e 7-1
Activatingthe Debugger. i i it e 7-1
COBOLDebug Commandsoov it it e i et i i 7-3
Assign Address StopCommand (A) e 77
DumpDataltemCommand(D)oviiiininii i ii i i 7-8
Exit DebugModeCommand (E)ot 7-9
Change Program LocationCommand (L)...........ccovivniiiina i, 7-10
Modify Dataltem Command (M) i e 7-11
Quit ExecutionCommand (Q) iv ittt i it et e 7-14
Resume Program ExecutionCommand{R) iy 7-14
Execute Next Single StatementCommand(S) oot 7-14
Undo Address StopCommand (U) ..o it e e iaeaens 7-15
Write Screen to Message FlleCommand (W) 7-15
Debugging of Assembly Language Subroutines Linked to COBOL Programs 7-16
8 — Calling Subroutines

LT T 7 8-1
COBOL SubroutineLibraryPackageo o vvi i e c e e 8-1
Assembly Language Subroutines o i i 8-3

Contenis

Paragraph Title Page

9 — Interfacing to Productivity Tools

9.1 General.o e 9-1
9.2 TIFORM . 941
9.3 SO MEIgE . o 9.7
9.4 Database Management Systemt 8-15
241 DBMS- 900 Features ot e 9-16
9.4.2 DBMS-980UserInterfacet e 9-16
9.4.3 Linking DBMS-990 and COBOLModules ..., 9-16
9.5 QUETY-990 . . 9-31
9.6 COMMUNICAIONSo e e 89-35
9.7 Communication Equipment i 9-35
9.8 3780 Emulator Communications Software e 9-35

10 — Using SCI Command Procedures to Execute COBOL Tasks

10.1 General. 10-1
10.2 SClCommand Procedure Elementsouueeeeeu i 10-1
10.3 Example Command Proceduresccoviiinininnnn... e 10-2
10.3.1 EXample 1 . e 10-2
10.3.2 XMl 2 . L e 10-3
10.3.3 EXample 3. . 10-6

11 — COBOL Device-Dependent Attributes

11.1 Function Keys 11-1
11.2 Low Volume Input/Output (WO) i e 11-2
11.3 Graphic Input/Output e 11-8

12.1 General . . e e e 1241
12.2 File O Statuso i 12-1
12.3 File MO Status Valueso i 12-3
124 Useof Declarativest e e 12-8

13.1 General. ... e 1341
13.2 Object Size Considerations i 131
13.3 ArithmeticOperalionso it 13-2
13.4 Control Operations e 13-3
13.5 Move Operations i 13-6
13.6 HOOpEralions it e e 138

X 2270521-9701

Contents

Appendixes
Appendix Title Page
A Keycap Cross-Referencettt i e e e e e e A-1
B COBOL Compiler Erfor MesSSa0ES ...t it vttt et ee e et e et B-1
C COBOLRUN-TIME EMmorMessages ... oottt it it ettt e eae i nnanns CA1
D COBOL Subroutine Library Package i it it it D-1
E COBOL CompilerListingFormat ittt E-1
Index

lllustrations
Figure Title Page
11 Program Source Module — MANUAL.PG.SRC.FIGO101 1-3
1-2 Compiler Listing — MANUAL.PG.LST.FIGO102. i, 1-4
21 Directoryand File Structure e e 2-7
2-2 Sequential File Descriptionand Creation............ i iiiienan.. 2-11
2-3 Sequential Files: Physical Record Size < Sector Size < ADUSize.............. 212
2-4 Sequential Files: Physical Record Size = Sector Size < ADUSIize 212
25 Sequential Files: Sector Size < Physical Record Size < ADUSIze 2-13
26 Sequential Files: Sector Size < Physical Record Size=ADUSIize 213
2-7 Sequential Files: Physical Record Size > ADU Size = SectorSize.............. 2-14
2-8 Relative Record File Descriptionand Creation 2-16
29 Relative Record Files: Physical Record Size < Sector Size < ADUSize 2-17
2-10 Relative Record Files: Physical Record Size = Sector Size < ADUSize 2-18
2-11 Relative Record Files: Sector Size < Physical Record < ADUSize 2-18
212 Relative Record Files: Sector Size < Physical Record Size =ADU Size 2-19
213 Relative Record Files: Physical Record Size > ADU Size = SectorSize 2-19
214 KIF Description, CFKEY Creation,and MKF Listing 222
31 Organizationof FilesinDirectory o i i e i, 3-2
32 Sample COBOL Program Source Module — VOLUME.SOURCE.EXAMPLE2....... 3-4
4-1 Sample COBOL Compilerlistingo i i . 4-4
5-1 Determining Link Edit Requirements for COBOL Programs..................... 5-3
5-2 MemorY Mapping ..o i i i e e e e e e e 5-4
5-3 ContentsofaProgram File it i e i 5-5
5-4 Multiple Tasks SharingSame Piand P2 i i it 5.7
55 Multiple Tasks Sharing Same P1 but DifferentP2s coht. 5-8
56 Multiple Tasks on Separate Program Flles i, 59
5-7 Comparisonof Memory Requirements 5-10
5-8 COBOL Segmentation Within Overlay PhaseModules 5-11

2270521-9701

xi

Contents

Figure

5-9

510
5-11
5.12
5-13
5-14
5-15
5-16
517
5-18

6-1

71
7-2
7-3
7-4
75

81
8-2

9-1
9-2
9-3
9-4
9-5
96

10-1
10-2
10-3
10-4

11-1
112
113
11-4

12-1

xii

Title Page
Linking a Single Procedure Segment With a Single Task Segment 5-16
Linking a Single Procedure Segment With Multiple Task Segments............. 5-17
Linking Two Procedure Segments With aSingle Task Segment 5-18
Linking Two Procedure Segments With Multiple Task Segments 5-20
Linking Two Procedure Segments With Multiple Task Segments (ALLOCATE), .. .5-21
An Overlay Structure With the Accompanying Link Control File 5-23
Sharing the Main Program ModuleWithP2 5-24
LinkingaPiWith Different P2s it it e, 5-25
Linking a Single Procedure Segment WithaSingleTask 5-27
Random Library Structure i i i it e 5-28
SPECIAL-NAMES Paragraph EXamplettt e ce i enineens 6-3
CompilerOutput Listing i 7-4
Inieractive DebuggingExample...........o o i 7-17
COBOL Program Calling Assembly LanguageModules 7-18
Assembly Language Module ADDRES i iiiiiiiiiiiiinnnn. 7-20
Assembly Language Module IOQCALL it iiriiiieeiinnnns 7-21
Exampie of COBOL Routine Calling Assembler Subroutine 85
Example of Assembler Subroutine CalledbyCOBOL 89
COBOL Module InterfacingWithTIFORM vn... 9-2
TIFORM VDT Screen Descriptionottt ie it ein e 9-6
COBOL Routine Calling SortIMerge ittt irnannnenns 9-8
COBOL InterfacingWithDBMS-990 i iiie s 9-16
Data Definition Language(DDL)File i e 9-30
COBOL Module Linked toQUery ittt et i it e 9-32
SImple SCIProcedure. o i i e e 10-2
Tailored SCIProcedure.o it i e i e i e it i 10-4
COBOL ProcedUIe. . ..ttt e e et et et e e e et e e 10-7
COBOL Program Module Retrieving Additional SCi Parameters 10-8
Use of ACCEPT and DISPLAY Statementscoiiiiiienininrnnen, 11-5
Contents of VDT Screen at Frogram Completion 11-8
L€ L= T 1 o 11-9
Graphic CharaC eI . . ., i e it i e i et e e e et s 11-11
Checking Error-Handling Capabilities Through DECLARATIVES 129

2270521-9701

Contents

Table

1-1
3-1
4-1
5-1
71

8-1
82

9-1
1141

12-1
122
12-3
12-4

2270521-9701

Title Page
Command Prompt Notation i i i 1-10
Files Required for Program Developmento i 31
COBOL Compiler OplionSs ... couiniii i it it it it e ia e 4.2
Valid Link Editor Commands With GOBOL Objectot 5-12
Debug ComMmMAaNds uenin ittt ittt a e 7-3
COBOLSubroutines Library ittt it iai e 8-2
Format Codes forCallingModule ittt 8-10
COBOL Entry Points to the Applications Interface Routines 9-2
Function Key Mappingo vvit it ittt it e ca e 11-2
FileStatus Tableo ir i i i i e it it i it saca i anans i2-2
Operating System Errors and COBOL Flle StatusErrors 12-3
COBOL /O Operation Valldity Table o 12-7
Device GorrespondenceTable.o i 12-8

xlit/xiv

Introduction

1.1 COBOL

The COBOL compifer conforms to the American Nalional Standards Institute (ANSI) COBOL sub-
set as defined in ANS! document X3.23-1974. The COBOL compiler incorporates extensions to this
subset to provide added capabilities. The compiler package employs the following ANSI 74 stan-
dard COBOL modules at the level indicated:

Level 1 Features Level 1+ Features*
Interprogram communications Nucleus
Library Table handling
Segmentation Sequential I/O
Relative 11O
Indexed 11O

* Selected features from level 2
COBOL debug support and ACCEPT and DISPLAY statements are nonstandard and are designed
for interactive use on video display terminals (VDTs).
1.2 A COBOL PROGRAM DEVELOPMENT OVERVIEW

The operating system provides developmental and operational support for program modules
written in COBOL. The Information presented in this section is an overview of the following:

. Building program source modules via the text editor

. Compiling program source modules to produce object program modules

. Linking program object modules to produce program images on a program file

. Executing program images on a program file

. Executing a program object module or a linked object module
Refer to the appropriate sections in this manual for specific details about developmental and
operational supporl for program modules written in COBOL. The details of the language are dis-
cussed in the COBOL Reference Manual.
During the preparation of this manual, some assumptions have been made for the sake of a clear

presentation. You are assumed to have a DX10 system with SCI, a terminal operating in VDT mode,
avalid user ID, and a passcode.

22705219704 11

Introduction

The fallowing definitions are provided to assist you when reading this manual:

Module — A set of computer program instructions treated as a unit by an assembler, compiler, link
editor, or other similar processor.

Object File — A file (usually created by the compiler) containing one or more object program
modules.

Program — A collection of object instructions that directs the activities of acorﬁputer; can consist
of task segments, procedure segments, and overlays.

Task — A program that executes under control of the operating system.

Source File — A file {(usually created by using the texi editor) containing one or more program
source modules (source code or statements).

Linked Object File — A file (created by the link editor) containing one or more program object
modules thal have been linked together to produce linked object modules.

Program File — A file (created by you or by the link editor) containing executable program com-
ponents in memory image form.

Link Control File — A file (created by you) containing instructions for the link editor.

Subroutine — A sequenced set of statements thal may be used in one or more programs and at
one or more points in a program.

Logical Unit Number (LUNO)} — A number that represents a file or device and is specified in an I/O
operalion.

Synonym — A text string that functions as an alternative for another string.

Normally, you write COBOL program source moduies from a VDT under the control of the text edi-
tor. The text editor allows you to create or madify an existing program source module. This file is
used as input to the COBOL compiler. A pathname Is assigned to the source file at its creation.
Pathnames are discussed in Section 2. Figure 1-1 shows a sample COBOL program source
module.

When SCI commands are invoked during compilation or execution, a command heading and infor-
mation concerning the software release level are displayed. The software release information
appears as follows;

VERSION <L.R.V YYDDD>

where:
L is the software level.
Ris the software release of level L.

V is the software version of release R (operating system).

1.2 2270521-9701

inltroduciion

YY is the year the software was released.
DDD is the day of the year when the sofiware was released.

IDENTIFICATION DIVISION.
PROGRAM-ID. LRV.
ENVIRONMENT ODIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI1-990.
0BJECT-COMPUTER. TI-990.
INPUT-0UTPUT SECTION.
FILE-CONTROL.
SELECT LISTFILE ASSIGN TO RANDOM 'LST'".
DATA DIVISION.
FILE SECTION.
FD LISTFILE LABEL RECORDS STANDARD.

01 LISTING.
02 ccC PIC X(3).
02 DNCBL PIC X(15).
02 L-R-V PIC X(7).
02 YY-DDD PIC X(7).

02 COMPILED PIC X(9).
02 MM-DD-YY PIC X(9).
02 HH-MM-5S PIC X(9).

02 FILLER PIC X(10).
02 PAG PIC X(4).
02 FILLER PIC X(7).

WORKING-STORAGE SECTION.
01 ACTION PIC X.
01 EOF PIC X VALUE " ",
PROCEDURE DIVISION.
MAIN-PROG.
OPEN I-0 LISTFILE.
PERFORM READ-WRITE UNTIL EGF > " ',
CLOSE LISTFILE.
STOP RUN,
READ-WRITE.
READ LISTFILE AT END MOVE 1 TO EOF,
If DNCBL = "DNCBL"
IF COMPILED = "COMPILED:"
If PAG = "PAGE"
MOVE "L.R.V'" TO L-R-V
MOVE "YY.DDD" TG YY-DDD
MOVE "“MM/DD/YY" TO MM-DD-YY
MOVE "HH:MM:5S'" TO HH-MM-SS
REWRITE LISTING.

Figure 1-1. Program Source Module — MANUAL.PG.SRC.FIG0101

2270521-9701 1-3

Introduction

To compile a COBOL program source module, enter one of the Execute COBOL Compiler (XCC or
XCGF) commands. The command prompts for the XCCF command (with sample responses
included) are as follows:

EXECUTE COBOL COMPILER FOREGROUND <VERSION: L.R.V. YYDDD>

SOURCE ACCESS NAME: MANUAL.PG.SRC.FIG0102
OBJECT ACCESS NAME: MANUAL.PG.0BJ.FIG0102
LISTING ACCESS NAME: MANUAL.PG.LST.F160102

OPTIONS: M

PRINT WIDTH: 890

PAGE SIZE: 55

PROGRAM SIZE(LINES}: 1000

After responding to the prompts, press the Return key to activate the compiler. When the compila-
tion compietes, a completion message appears on the video display terminal (VDT) screen. If an
error occurs, check the error message in the appropriate appendix, correct the error, and recompile

the program source module. Section 4 has complete instructions for compiling COBOL source
program modules.

Figure 1-2 shows an example of a compiler listing. Notice that the number of errors and warnings
as aresult of the compilation are included near the end of the listing.

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:S$S OPT=M PAGE 1
SOURCE ACCESS MNAME: MANUAL.PG.SRC.FIG0102
OBJECT ACCESS NAME: MANUAL.PG.0BJ.FIG0102
LISTING ACCESS NAME: MANUAL.PG.LST.FIG0102
OPTIONS: M
PRINT WIDTH: 80
PAGE SIZE: 55

PROGRAM SIZE (LINES)Y: 1000

Figure 1-2. Compiler Listing — MANUAL.PG.LST.FIG0102 (Sheet 1 of 3)

1.4 2270521-9701

Introduction

DXCBL L.R.V. YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2
LINE DEBUG PG/LN AL ... Bu.itetnime it toteoincnneenanennsnssosnenssnenenanss
1 IDENTIFICATION DIVISION,
2 PROGRAM-ID. LRY.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. TI-990.
6 OBJECT-COMPUTER. TI-990.
7 INPUT-0OUTPUT SECTION,
8 FILE-CONTROL.
9 SELECT LISTFILE ASSIGN TO RANDOM “LST".
10 DATA DIVISION,
11 FILE SECTION.
12 FD LISTFILE LABEL RECORDS STANDARD.
13 01 LISTING.
14 02 CcC PIC X(3).
15 02 DNCBL PIC X{15).
16 02 L-R-V PIC X(7).
17 02 YY-DOD PIC X(7).
18 02 COMPILED PIC X(9).
19 G2 MM-DD-YY PIC X{(9).
20 02 HH-MM-sS PIC X(9).
21 02 FILLER PIC X(10).
22 02 PAG PIC X(&4).
23 02 FILLER PIC X{(7).
24 WORKING-STORAGE SECTION.
25 01 ACTION PIC X.
26 01 EQF PIC X VALUE ' ",
27 PROCEDURE DIVISION.
28 >0000 MAIN-PROG.
29 >0000 OPEN I-0 LISTFILE,
30 >0006 PERFORM READ-WRITE UNTIL EOF > " n,
31 >0010 CLOSE LISTFILE,
32 >001é6 STOP RUN.
33 >0018 READ-HWRITE.
34 >0018 READ LISTFILE AT END MOVE 1 TO EOF.
- 35 >0022 I1F DNCBL = '"DNCBL"
36 IF COMPILED = “COMPILED:"
37 IF PAG = "PAGE"
38 MOVE "L.R.V'" TQO L-R-V
39 MOVE "YY.DDD" TO YY-DODD
40 MOVE "MM/DD/YY" TO MM-DD-YY
41 MOVE "'HH:MM:S$" TO HH-MM-S$
42 REWRITE LISTING.
43 ZZZ227 END PROGRAM, *%*% END OF FILE

2270521-9701

Figure 1-2. Compiler Listing — MANUAL.PG.LST.FIG0102 (Sheet 2 of 3)

1-5

Introduction

DXCBL L.R.V. YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3
ADDRESS SIZE DEBUG ORDER TYPE NAME
0 FILE LISTFILE
>0026 80 GRP 6 GROUP LISTING
50026 I ANS 0 ALPHANUMERIC ce
>0029 15 ANS 0 ALPHANUMERIC DNCBL
>0038 7 ANS 0 ALPHANUMERIC L-R-V
>003F 7 ANS 0 ALPHANUMERIC YY-DDD
>0046 9 ANS 0 ALPHANUMERIC COMPILED
>004F 9 ANS 0 ALPHANUMERIC MM-DD-YY
>0058 9 ANS 0 ALPHANUMERIC | HH-MM-SS
>0068 4 ANS 0 ALPHANUMERIC PAG
>007A 1 ANS 0 ALPHANUMERIC ACTION
>007¢ 1 ANS 0 ALPHANUMERIC EOF
READ ONLY BYTE SIZE = >012A
READ/WRITE BYTE SIZE = >00CE

OVERLAY SEGMENT BYTE SIZE = >0000
TOTAL BYTE SIZE = >01F8
0 ERRORS

0 WARNINGS
Figure 1-2. Compller Lisiing — MANUAL.PG.LST.FIG0102 (Sheet 3 of 3)

After compilation, the compiled object module is either execuled, linked to create a linked object
module, or linked to create a program image on a program file. Refer to Section 6 for details and
restrictions regarding execution of a compiled object module. Section 5 contains details and
restrictions for linking.

Before MANUAL.PG.OBJ.FIG0101 is executed, external file assignments must be resolved if syn-
onyms are specified in the source module. In Figure 1-1, the synonym LST must be assignegd to the
pathname of the compiler listing file. To assign the synonym LST, enter the Assign Synonym (AS)
SCl command. The command prompts are as follows (with sample responses included):

ASSIGN SYNONYM VALUE
SYNONYM: LST
VALUE: MANUAL,.PG.LST.FIG0101

1-6 2970521.9701

introduction

To execute COBOL object modules, use the Execute COBOL Program (XCP or XCPF) SCI| com-
mand. When the XCPF command is activated, enter the COBOL object file access name or linked
object file access name defined when the COBOL program module was compiled or linked. The
SCI commands associaled with execution of a COBOL program are described in detail in Section
6. The command prompts are as follows (with sample responses included}:

EXECUTE COBOL PROGRAM FOREGROUND <VERSION: L.R.V. YYDDD>
OBJECT ACCESS NAME: MANUAL.PG.OBJ.FIGO0101
DEBUG MODE: NO
MESSAGE ACCESS NAME:
SWITCHES: 00000000
FUNCTION KEYS: NO

To create a linked object module, the Link Editor utility and a link control file are required. If a link
control file is not available, you must create one. An example link control file is as follows:

TASK LRV
INCLUDE MANUAL.PG.OBJ.FIGO101
END

You also need a link control file to link an object module for producing a program image using the
Link Editor utility. An example link control file is as follows:

FORMAT IMAGE,REPLACE
PROCEDURE RCOBOL

DUMMY

INCLUDE .S$SYSLIB.RCBPRC
TASK LRV

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE MANUAL.PG.OBJ.FIG0O101
END

In this link control file, named MANUAL.PG.CONTROL.EXAMPLE1, the IMAGE in the FORMAT
statement ensures that the object file output from the link editor is written directly to a program
flle in memory image form. The word REPLACE ensures that any task segment in the program file
with the name LRV is deleted before this task segment is written to the program file. The DUMMY
command prevents the shared procedure segment (RCOBOL) from being replaced in the program
file.

To initiate the link editor, enter the Execute Link Editor (XLE) SCI command. Respond to the
prompts to link and install the LRV task on a program file named MANUAL.PG.PROGRAM. The
command prompts are as follows (with sample responses included):

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: MANUAL.PG.CONTROL.EXAMPLE1
LINKED OUTPUT ACCESS NAME: MANUAL.PG.PROGRAM
LISTING ACCESS NAME: MANUAL.PG.LINKLIST.EXAMPLE1
PRINT WIDTH (CHARS): 80
PAGE LENGTH: 59

2270521-9701 1-7

introduction

To execute linked object modules, use the Execute COBOL Program (XCP or XCPF) commands.
You can execule the object module as a program image on a program file by using the Execute
COBOL Task (XCT or XCTF) commands.

Now, to execute the installed program image, use the XCT or XCTF commands. Once the call has
been issued, the COBOL task executes under control of the run-time interpreter; the interpreter is
included as part of the task at link edit time.

To execute the task LRV on program file MANUAL.PG.PROGRAM, enter the XCTF command and
respond to the command prompts. Section 6 describes the SCl commands associated with exe-
cution of a COBOL task. The command prompts are as follows (with sample responses included):

EXECUTE COBOL TASK FOREGROUND <VERSION: L.R.V. YYDDD>
PROGRAM FILE LUNO: >7
TASK ID OR NAME: LRV
DEBUG MODE: NO
MESSAGE ACCESS NAME:
SWITCHES: 00000000
FUNCTION KEYS: NO

After responding to the prompts, the program executes. If an error occurs: 1) check the error mes-
sage in the appropriate appendix; 2) correct the error; and 3) compile, link edit, and execute the
task again.

COBOL debug mode is available only with the XCPF and XCTF commands. The debug mode pro-
vides for controlled execution of a program or task. When running in debug mode, a program or
task can be halted and resumed. The debug mode allows you to specify address stops, single
COBOL statement execution, or data item dumps. Also, it is possible to exit from debug mode or
quit execution of a task. For further information about debugging, refer to Section 7.

1.3 SCICOMMAND PROMPT FORMAT AND NOTATION

When SCIl command prompts are described in this manual, a standard format and notation is used.
The notatlon is described in the following paragraphs.

4

1.3.1 Command Name
The characters of a command represent the full command name. For example, the characters of
the Show Date and Time command are SDT. To enter a command, type the characters of the com-
mand and signal when finished by pressing the Return key.
When you enter SDT and press the Return key

(] SDT <RETURN>
the system responds as follows:

13:48:30 WEDNESDAY, MAY 14, 1980.

Since the Show Date and Time command includes no command prompts, the command executes
without further user interaction.

1.8 2270521-9701

introduction

1.3.2 Command Prompts Returned

Upon entry of a command, the system dispiays the full name of the command and any associated
command prompts. Command prompts provide you with information and reques! parameters to
complete execution of the command. In the Show File example that follows, the cursor appears
after the “FILE PATHNAME:" prompt. The system waits for you to enter a file pathname. (A path-
name s a character string that indicates a path to a resource such as a file, channel, or device.)

1.3.3 Type of Response Expected

For each command prompt, a response of a given type is expected. In the remainder of this
manual, the expected response type is given afier each command prompt. In the Show File
example that follows, the expected response type is a pathname. To enter a response, proceed as
follows:

1. Type the desired response. The response must be of the type expected. To show the
contents of a file named .MYFILE, type .MYFILE In response to the FILE PATHNAME:
prompt of the Show File {(SF) SCl command.

2. Press the Return key to signal that the entry is complete.
The following example illustrates the description of the SF command:

[1 sF
SHOW FILE
FILE PATHNAME: pathnamed

Following the response to the first prompt, the cursor is positioned after the next prompt and
waits for your response. After entry of the response to the last prompting message, the command
executes. You can press the Command key prior to entering the last prompt to prevent execution
of acommand.

To help you respond to the prompts, the system sometimes displays an initial value after a prompt
or has a default value avallable for a response. The following paragraphs describe initial values and
default values.

1.3.3.1 Initial Values. An initial value is a value that the system automatically displays as a
response to some prompling messages. Users can accept an initial value by pressing the Return
key. They can erase the initial value by pressing the Erase Field or Skip key. Finally, they can reject
the initial value by entering a different value.

The initial values for some prompts are fixed; therefore, the same initial value always appears for
that prompt. In other cases, the system saves a value entered with a command and displays it as
an initial value for a later entry of the same command or for the entry of a related command. Some
variable initial values are also saved from one terminal session to another. '

1.3.3.2 Default Values. A defauit vaiue is a value that the system automatically supplies as the
response to a prompt when you do not enter a value. The system often provides default values to
speed up the entry of responses to prompts. This Is especially true for optional user responses. To
enter the default value for a prompt (where a default value exists), press the Return key without
entering any other data. Such an entry is called a nulf entry.

2270521-9701 1.9

Introduction

Notation symbols (Table 1-1) enclose some prompt responses in the command descriptions to
help explain how the responses are entered.

Table 1-1. Command Prompt Notation

Notatlon Meaning

Uppercase Enter the response as listed.

Lowercase Enter aresponse of this type.

No marks The response s required.

11 The response is optional.

{1 The response must be exactly one of the enclosed
items or must be a type of one of the enclosed items.
(Choices separated by a slash.)

item. . .ltem More than one ttem of this lype may be entered in
reponse to the prompt. Items should be separated by
commas.

@ Synonyms or logical names are allowed (as responses).

0

The item enclosed in parentheses represents the initlal
value. If {*} is shown, the value may be supplied from a
synonym set by a previously used command procedure.
If a list Is supplled in a form other than interactive
{batch mode or a procedure cailing a command proce-
dure}, the list must be enclosed In parentheses.

110

2270521-9701

2

Operating System Concepts

2.1 INTRODUCTION

This section provides an overview and describes some important system capabilities. For more
information, refer to the operating system manuals listed on the frontispiece of this manual.

2.2 TASK STRUCTURE

A task is a specific activation of a program. DX10 is a muititasking operating system designed to
share concurrently the memory, machine execution time, and peripheral resources of the system
among several tasks. While one task is active {executing), others are suspended awaiting
reactivation.

At each terminal, it Is possible to have one foreground task and one background task concurrently
active.

2.2,1 Interactive Tasks

All interactive lasks operate in either foreground, background, or batch. A foreground task can
accept data from the terminal as it is executing. In background mode, SCI does not expect inter-
action with terminals. You can start a task {for example, updating a database) in background mode
and perform other activities (such as data collection) in foreground mode while the background
task is active. When complete, the background task returns a message to the terminal, indicaling
completion.

Commands entered from interactive terminals are entered in foreground mode. The operating sys-
lem responds by displaying the appropriate command prompts. Enter the required information;
the task now begins execution. While the task executes in foreground, SCl is suspended to avoid
interference. User interaction now occurs directly with the foreground task. The DX70 Operations
Guide describes the commands that initiate tasks in all modes.

2,2.2 Batch Streams

Batch streams use SCl in background mode to process batch commands. In batch mode, SCi
accepts commands from any sequentially oriented device but not from a terminal. When you enter
commands in a batch command stream, include all parameters required for the operation. Also, be
sure that the commands included are suitable for execution in background mode. Commands that
initiate operations requiring user interaction (for example, text editing and debugging commands)
are not permitted.

2270521-9701 21

Operating System Concepls

2.3 USING SCI

The following paragraphs discuss the use of SCI. Section 10 gives information for designing your
own command procedures. The DX10 Applications Programming Guide contains complete
descriptions of SCl commands, plus procedures for creating new commands and menus.

2.3.1 SCIl Description

SCl is the interface between you and the operating system, system utilities, the software develop-
ment programs, and application programs. Application programs can interface with you through
user-defined SCI commands and menus.

You can use SCI to activate programs and to pass parameters to the programs during execution.
SC! also allows you to build and maintain tables of varlabies, called synonyms, and their values.
SCl allows application programs to access these variables for use in the programs.

To execute an application program via SCI, you can use predefined execution commands such as
Execute Task (XT), Execute FORTRAN Task (XFT), Execute Pascal Task (XPT), and Execute COBOL
Task (XCT), or you can write your own SCI command to initiate a program. You can add user-
defined commands to the system library, or you can group them In a separate command library.
The .USE primitive allows you to specify which command library SCl should use.

You can enter SCl commands from interactive terminals or in batch command streams. In
response to commands entered interactively, SCI displays command prompts associated with the
command.

When all required prompts have been properly answered, SCi Interpreis the responses and
initiates the requesied operation.

2.3.2 Entry of SCl Commands in VDT Mode

To enter an SCl command in VDT mode, type the characters (in uppercase letters) of the command
and press the Return key. If you set the lowercase option with the .OPTION primitive, you can use
either upper or lowercase characters. Upon entry of a command, SCl displays the full name of the
command entered and all the field prompts associated with the command. Field prompts provide
information and request parameters to complete command execution. For example, the following
field prompt requests that you identify an cutput pathname:

OUTPUT PATHNAME:

2,3.3 Examples of Using SCI
The following paragraphs contain examples of specific uses of SCl commands.

2.3.3.1 The Show Background Status (SBS) Command. Use the SBS command to view the
status of a program that is currently executing in background mode and that was initiated from
your terminal. Since this command has no associated prompts, the command executes immedi-
ately after you enter SBS and press the Return key. A message indicating the state of the back-
ground activity appears, as follows:

[1 SBS
SHOW BACKGROUND STATUS

TASK IS ACTIVE

2-2 2270521-9701

Operaling System Concepls

2.3.3.2 The List Directory {LD) Command. Use the List Directory command o list the names of
all files and subdirectories in a directory. The display for this command is as follows:

(1 b

LIST DIRECTORY
PATHNAME: pathnamed
LISTING ACCESS NAME: [pathnamela

In response to the prompt PATHNAME, enter the pathname of the directory whose filenames and
subdirectory names will be listed. The @ Indicates that you can specify the pathname as a
synonym.

in response to LISTING ACCESS NAME, enter the pathname of the device or file to which the
listing should be wrilten. The brackets ([]) indicate that the response is optional. The default value
is the terminal at which the command is entered. A null response {pressing the Return key while
the cursor is in a blank field) causes the default value to be accepted. In the following case, the
directory SYS2.DP008O0 is listed to the terminal from which the command was executed. Synonym
D represents the directory pathname.

(1 LD o

LIST DIRECTORY
PATHNAME: $YS2.DP00S80
LISTING ACCESS NAME:

DIRECTORY LISTING OF: SYS2.DP0GB0
MAX # OF ENTRIES: 101 4 OF ENTRIES AVAILABLE: 78

DIRECTORY ALIAS OF ENTRIES LAST UPDATE CREATION

ML * 5 (5/30/80 13:44:48 03/17/80 12:51:06
TIP * 11 05/07/80 12:02:20 02/11/80 16:44:21
FILE ALIAS OF RECORDS LAST UPDATE FMT TYPE BLK PROTECT
BATCH * 24 06/03/80 08:16:56 BS N SEQ YES

coBoOL L 3550 05/30/80 14:06:46 NBS N SEQ YES

DATA * 17 05/07/80 15:31:57 8BS N SEQ YES

16:21:50 TUESDAY, JUN 03, 1980.
2.3.4 Batch Use of SCI
To use SCI in a batch mode with a batch stream, use the Execute Batch (XB) command. The XB
command starts a background task that is associated with your terminal.

The following paragraphs discuss the characteristics of batch SCI and the differences in format
between batch commands and commands entered interactively.

2270521-9701 2.3

Operating System Concepls

2.3.41 Batch Stream Formal. The first and last commands of a baich stream should be the
BATCH and EBATCH commands, respectively. The BATCH command initiates the batch SCl envi-
ronment. EBATCH indicates that the batch stream contains no more commands to be processed
by SCI.

Upon normal completion of the batch stream executing in background mode, the following mes-
sage appears:

BACKGROUND EXECUTION HAS COMPLETED:

2.3.4.2 Batch Command Format. When supplying SCI commands in batch stream format,
include the following information for each command:

* The characters of the command
. All required prompts associated with the command
. The parameter values (responses) for the command prompts

The following examples demonstrate the Execute Link Editor (XLE) command in both interactive
and batch form. (Refer to the Link Editor Reference Manual for a complete description of the XLE
command.)

When you enter XLE Interactively, the command prompts appear:

[1 XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: pathnamed
LINKED QOUTPUT ACCESS NAME: [pathnamel@d
LISTING ACCESS NAME: [pathnameld
PRINT WIDTH: integer (80)
PAGE LENGTH: integer (59)

To execute the command, respond to the CONTROL ACCESS NAME prompt by specifying the
pathname of the file or device from which the control stream is to be read. Then, either specify
values or accept the default values for the remaining prompts. if the control stream is contained in
the file .M.CONTROL, the linked output is to be written to the file .M.OBJECT, the Link Editor
listing is to be written to the file M.LIST, and an 80-character line with 59 lines per page is
acceptable, respond as follows:

[) XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .M.CONTROL
LINKED QUTPUT ACCESS NAME: .M.OBJECT
LISTING ACCESS NAME: .M,LIST
PRINT WIDTH (CHARS): 80
PAGE LENGTH: 59

2:4 2270521-9701

Operating System Concepls

To execute this command in a batch stream, include the characters of the command, all required
and any optional prompts that are specified, and the responses to those prompts. The following
patch command is equivalent to the interactlve version shown previously:

XLE CONTROL=.M.CONTROL, LINKED OUTPUT=.M.OBJECT, LISTING=.M.LIST

Notice that you can accept the default values for the PRINT WIDTH and PAGE LENGTH prompts
by omitting them from the batch command. Also, you can use abbreviated versions of the speci-
fied command prompts. The abbreviation must be sufficient to uniquely identify the prompt.
Often, only the first character of acommand prompt need be entered. For example, the following is
equivalent to the previous example:

XLE ¢=.M.CONTROL, LO=.M.OBJECT, LIST=.M.LIST

A batch stream consists of one command or a series of commands in this format, preceded by the
BATCH command and followed by the EBATCH command. The file containing the batch command
stream Is the input file for the XB command.

2343 Interactive Executlon of Batch Streams. Use the X8 command to execute batch streams
as background activities. After you enter the XB command and the batch stream begins execution,
you can continue to execute SCI commands In foreground mode. After the balch stream com-
pletes, the completion message appears the next lime you press the CMD key. To monitor batch
stream execution, enter the Show Background Status (SBS) command from time to time. Also, you
can view the listing file for the batch stream during the run.

An example of the XB command is as follows:

[(1xB

EXECUTE BATCH
INPUT ACCESS NAME: pathnameda
LISTING ACCESS NAME: pathnamed

The INPUT ACCESS NAME Is the pathname of the device or file that contains the batch stream.
The LISTING ACCESS NAME is the pathname of the device or file that is to receive the results of
the batch stream execution. This device or file must not be used by any command in the batch
stream.

2.3.4.4 Entering Programs From Sequential Devices. You can use any sequential file of program
source code for input to the compilers or the assembler. If necessary, copy source code that has
been key-punched on a card deck to a sequential disk file. Program source code, entered by the
Text Editor or Copy Concatenate (CG) command, can be read from devices. An example of using
the CC command to copy the source code from cards to a disk file is as follows:

(1 cC

COPY/CONCATENATE
INPUT ACCESS NAME(S): CRO1
QUTPUT ACCESS NAME: .USER.SOURCE
REPLACE?: NO
MAXIMUM RECORD LENGTH:

2270521-9701 2.5

Operating System Concepts

2.4 DIRECTORY AND FILE STRUCTURE

File management allows you to build, organize, and access directories and files. A fife consists of
a named collection of data. The data in the file can be generaled by you (for example, source code
or documentation) or by the system (for example, object code or listing files). A directory Is a rela-
live record file that contains the information necessary to locate other files and describes the char-
acteristics of those files. It does not contain user data.

2.4.1 Establishing Volume Names

Volume names are alphanumeric character strings of as many as eight characters that identify the
disk on which afile is found. The first character of a volume name must be an alphabetic character,
Forexample, VOL1 could be the volume name of a disk.

The Initialize Disk Surface (IDS) command prepares the disk surface for initialization by the
Initialize New Volume (INV) command. The iDS command must be performed prior to the first INV
command. It s not necessary to perform another 1DS before any further initializations of the disk.

The INV command assigns volume names to disks. Once a volume is initialized by an INV com-
mand, all access to files on that volume must include the volume name in the pathname or access
name, unless the volume is the system disk or unless a device is specified,

One disk drive on each system is designated to hold the system disk. The system disk contains all
required operating system components, including the loader program, system program flles, and
temporary system files. The system disk is the default volume when no volume name is specified.
For example, .PROOF designates a flle named .PROOF on the system disk.

2,42 Establishing Directories
Each disk volume has a file directory named VCATALOG, to contain the volume table of contents.
The files described in VCATALOG are data files or directory files (Figure 2-1).

Directory flles contain the names of, and pointers to, other files; they do not contain user data.
Typically, related files are contained in a directory. Directories can also contain subdirectories.
Both directories and subdirectories are created by the Create Directory File (CFDIR) command. A
subdirectory can be created under a directory only after the directory has been created.
For example, subdirectory VOL1.SOURCE.PROGRAMA cannot be created unless directory
VOL1.SOURCE already exists.

It Is convenient to group related files into a single directory. For example, all source files for a pro-
gram might be in a .dlrectory named VOL1.SOURCE.PROGRAMA,; all listings generated from
assembly or compilation of source modules for this program might be in a directory named
VOL1.LISTING.PROGRAMA.

Do not assign file names that might be confused with system file names. Most system file or direc-
tory names begin with S$.

2.6 2270521-9701

LEVEL 1 %
L
-~
LEVEL 2 j
.
-
LEVEL 3 <
S
LEVEL 4 <
oy
g

LEVEL N 1

2278899

VCATALOG
FILE
DIRECTORY

Operating System Concepls

USER FILES

FILES

SYSTEM
DIRECTORIES

USER USER
FILES DIRECTORIES
USER
FILES

USER
DIRECTORIES

Flgure 2-1. ' Directory and File Structure

2.4.3 Establishing Files
Afler initializing a disk volume and creating directories and subdirectories, you can create files
that are accessible either under the volume or under a directory or subdirectory. The following
commands are avallable to create files:

2270521-9701

Create Key Indexed File (CFKEY)
Create Relative Record Flle (CFREL)

Create Sequential File (CFSEQ)

27

Operating System Concepts

. Create Program File (CFPRO)
. Create Image File (CFIMG)
* Create File (CF)

The CF command requires the subsequent selection of a file type.

25 PATHNAMES AND ACCESS NAMES

A file on a disk volume is referenced by ils pathname. A pathname is a concatenation of the
volume name, names of the directory levels leading to the file (excluding VCATALOG), and the file
name itself. Each component of a pathname cannot exceed eight characters in length. A complete
pathname must not exceed 48 characters, including the perlods used to separate directories, sub-
directories, and file names. The components of the pathname are separated by periods, as in the
following examples:)

VOL1 .AGENCY.RECORDS
MYDIRECT.MYDIRCTA.MYFILE
VOLTWO.DEB
EMPLOYOT.USRA.PAYROLL

EMPLOY01.USRB.CATALOGX.PAYROLL

An access name can be a device name, volume name, or file pathname. For device names, you
must use certain default names (except for special devices). Example device names include ST02
for terminal number 2, LPO1 for line printer number 1, and DS03 for disk number 3.

You can reference a volume on which a file resides through either the device name or the volume
name. Omitting the volume name and beginning the pathname with a period indicates that the file
Is on the system disk. Samples of valid names for devices and files are as follows:

File Identifier Meaning
CRO1 Device name
DS02.MYCAT.MYFILE Device name, dlrectory name, file name
.MYCAT.MYFILE System disk, directory name, flle name
VOLID.MYCAT.MYFILE Volume name, directory name, file name

2.8 2270521-9701

Operating System Concepls

2.6 SYNONYMS

Synonyms are abbreviations of one of more characters in length that are commonly used in place
of long pathnames or portions of pathnames. These synonyms are always available to foreground
tasks. Background tasks receive a copy of the foreground synonyms when the background task is
initiated. At terminals requiring log-on, user-defined synonyms are associated with the user's ID
and are available whenever that user logs on at any terminal. Use the Assign Synonym (AS) and
Modify Synonym (MS) commands to define synonyms and to modify defined synonyms. When you
enter a synonym in response to an SCl command prompt, the synonym is replaced by the actual
text string.

When an SC| command is executed in foreground mode, you can use a synonym only as the first or
only component of a pathname (device name or file name). For example, if A is a synonym for direc-
tory VOL1.SOURCE and B is a synonym for PROGRAMA in that directory, A.PROGRAMA Is an
acceptable file name. However, VOL1.SOURCE.B or A.B is not acceptable.

:

2.7 FILETYPES

A file consists of a collection of data groupings called logical records. This division into logical
records does not necessarily correspond to the physical division of data on disk or other media.
Thus, in addition to loglcal records, files also have physical records.

A logical record is the amount of information transferred in one {not multiple} Read or Write 1/O
request. A physical record is the amount of data actually transferred by the operating system
during an /O operation to the file. The ratio of the physical record size to the logical record size is
called the blocking factor. The logical record length (LRECL) in a file can be constant or can vary,
depending on the file type.

Disk space is assigned in allocatable disk units (ADUs). An ADU is an integral number of disk sec-
tors. The size of an ADU depends on disk capacity; larger disks have larger ADUs. An ADU is
always smaller than a track. On some disks, ADUs are as small as one sector.

The following file types are supported: sequential, relative record, and key indexed.

2.7.1 Sequential Files

Sequential flles are variable-record-length flles whose records are always read, written, and
accessed serlally (that Is, record 0 must be accessed first, record 1 must be accessed next, and so
on). Some examples of using sequential files are as follows:

. As an input file for card images. If a logical record length of 80 is specified, the sequen-
tial file can be treated as a card reader by the program reading the file.

» Asan output file. In this function, the fite can resemble the line printer.

¢ Asalocation forlisting files.

2270521-9701 2-9

Operating System Concepls

2.7.1.1 Sequential File Attributes. Sequential files have the following attributes:
. Sequential file logical records must be an even number of bytes in length.

* Sequential files can be created expandable. To extend the file, it must be opened in the
open extend mode.

» Record-level locking is supported.

. Blank suppression and blank adjustment are allowed on sequential files that are used
forinput purposes. However, neither is performed on sequential files that are automati-
cally created by COBOL. COBOL does not perform blank suppression or blank adjust-
ment on sequential files so that they can be used in the 1/0 operation Rewrite. Rewrite
verifies that the length of the record read has not changed before the rewrite is
attempted.

If the logical record length defined in the program is larger than the actual record read from the
file, the characters in the buffer beyond those of the actual record are undefined. For example, if
the defined record length is 80 and the file contains variable-length records with the specific
record read having a length of 50, the buffer area described in the file record-description-entry con-
tains the 50-character record pius 30 characters undefined. COBOL does not automatically initial-
ize its buffer area prior to a read operation. When reading variable-length records, the program
should initialize the buffer area prior to each read operation.

Files assigned to the device name PRINT are created as sequential files with carriage control char-
acters appended. With the appended characters, the logical record length is six characters larger
than that specified in the program. The six characters are split, with from one to four characters
preceding the record, and from one to four characters following the record, with a maximum of six
characters per record.
2.7.1.2 Creating Sequential Flles. Consider the following rules when creating sequential files:

. Logical record length must be less than or equal to the physical record length.

. Logical records can span sector boundaries,

. Logical records can span physical records; thus, partial records are created in both
physical records.

. Logical records can span ADU boundaries.
. Physical records must begin on sector boundaries,

. Physical records beginning in the middle of an ADU cannot span the ADU boundary.

2-10 2270521-9701

Operating System Concepls

Figure 2-2 shows both a file description for a sequential file in a COBOL program and the creation
of a sequential file using the Create Sequential File (CFSEQ) SCI command.

SELECT SEQ-EMPLOYEE
ASSIGN TO RANDOM, "EMPL"
ORGANTZATION SEQUENTIAL
ACCESS SEQUENTIAL
FILE STATUS SEQ-STATUS.

FD SEQ-EMPLOYEE LABEL RECORDS STANDARD.
01 SEQ-RECORD.

02 SOCIAL-SECURITY PIC X(9).
02 EMPLOYEE-NAME.

03 EMPLOYEE-FIRST-INITIAL PIC X.

03 EMPLOYEE-SECOND-INITIAL PIC X.

03 EMPLOYEE-LAST-NAME PIC X(20).
02 REST-OF-DATA PIC X(113).

CREATE SEQUENTIAL FILE
PATHNAME: EMPL

LOGICAL RECORD LENGTH: 144
PHYSICAL RECORD LENGTH:
INITIAL ALLOCATION:
SECONDARY ALLOCATION:

EXPANDABLE ?: YES

BLANK SUPPRESS 7: NO

FORCED WRITE ?7: NO

Figure 2-2. Sequential File Description and Creation

To minimize wasted disk space, the physical record size should be an integral multiple or factor
both of the ADU size and of the sector size.

2270521-9701 2.1

Operating System Concepts

The following figures illustrate the relationships between the logical record, physical record, sec-
tor, and ADU sizes. In some instances, disk space is wasted; in others, no space is wasted,
depending on the physical record size chosen. Each figure defines the relationship between logi-
cal record, physical record, sector, and ADU sizes. The boxed Information represents a linear
description of the loglcal records on a file. Below the logical record are the physical record, sector,
and ADU divisions of the data.

Figure 2-3 indicates the refationship between the physical record, sector, and ADU sizes when the
physical record size is less than the sector size and the sector size is less than the ADU size. In
this case, logical records are spanning physical records. Space is wasted within each sector
because the physical record must begin on the next sector boundary.

Figure 2-4 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is equal to the sector size and the sector size is less than the ADU size. In this
case, logical records are spanning physical, sector, and ADU boundaries.

RO1 RO2 RD///// 3 RO4 RO5 //// /] Ro6 Ro7 Ro/////

e—— PHYSICAL —-I fe— PHYSICAL —~| e—— PHYSIGAL —-I
—— SECTOR _.l I SECTOR _.l — SECTOR - .

ADU -

NOTES!:
1. LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR HCOUNDARY
2, PHYSICAL RECORD MUST BEGIN ON SECTOR BOUNDARY

2577253 3, LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY

Figure 2-3. Sequential Files: Physical Record Size < Sector Slze < ADU Size

RO RO2 RO3 RO 4 RO5 ROG Rb? ROB RO9 RI1O R
] 1 2
p——— PHYSICAL — [— PHYSICAL —_—— [PHYSICAL —_—"
h—— SECTOR > SECTOR SECTOR —p
ADU »
NOTES]

1. LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR BOUNDARY

2, LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY
2277254

Figure 2-4. Sequential Files: Physical Record Size = Sector Size < ADU Size

2.12 2270521-9701

Operating System Concepts

Figure 2-5 indicates the relationship between physical record, sector, and ADU sizes when the sec-
tor size is less than the physical record size and the physical record size is less than the ADU size.
In this case, the physical record is two times the sector size. One sector for every ADU Is wasled
because there is not enough space in the ADU to hold another physical record.

Figure 26 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is equal to the ADU size. When the physical record size is not specified at file
creation, the default value used Is the defined default of the directory on which the file Is created.
Logical records span physical records, sectors, and ADU boundaries.

vor [wox [wos o] o T [wee [e} GZ7/01000INIINIS,
e—— SECTOR __.| I._ s.-:::n _ |._ SECTOR ~ —a

NOTES:

1. LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR BOUNDARY

2. LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY

3, PHYSICAL RECORD BEGTNNING IN MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

2277255
Figure 2-5. Sequential Files: Sector Size < Physical Record Size < ADU Size
RO1 RO2 RO3 RO 4 ROS RO& RO7 ROS8 ROO R10 R
1 1 2
PHYSICAL
I SECTOR _.l |.__ SECTOR __.I |._ SEGTOR o]
ADU
NOTES!
1. LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR BOUNDARY
2, LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY
2277256

Figure 2-6. Sequential Files: Sector Size < Physical Record Size = ADU Size

2270521.9701 213

Operating System Concepts

Figure 2-7 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is greater than the ADU size and the ADU size is greater than or equal to the
sector size. In this case, space is wasted on the disk because the remaining space of the ADU is
too small to contain another physical record. Therefore, the next physical record must begin on
the next ADU boundary. Note that the logical record spans to the next physical record, which
begins on the next ADU.

2.7.2 Relative Record Files

Relative record files are also called random-access files. Unlike sequential files, relaiive record
files can be accessed in any order. Each record has a unique record number, which you specify to
access that individual record. The operating system increments the caller's record number after
each read or write so that sequential access is permitted. One end-of-file (EOF) record is main-
tained wherever it was last specified by a program. The range of record numbers is from zero to
one less than the number of records In the file. The maximum number of records in a relative
record file is 2 o the 24th power. The records are fixed in length, and the length must be speclfied
during file creation.

Relative record files are useful when each record In the file is already associated with a unique
value ranging from 0 to n; for example, in an inventory file, the item number can be specified as the
record number. Consequently, information about item number 1 can be obtained by accessing
record number 1.
2.7.2.1 Relative Record Attributes. Relative record files have the following attributes:

. Relative record files can be accessed sequentially in ascending order.

. Relative record files can be accessed randomly in any order.

. Records of odd or zero length are not allowed.

U All records are fixed in length, and the length must be specifled during file creation.

9
RO1 RO2 RO3 RO4 ROS RO5 RO6 RO ///////////////////
1 2
PHYSICAL
o—- SECTOR —+— SECTOR +— SECTOR —sM— SECTOR —+— SECTOR —+— SECTOR A'I
ADu ADU
NOTES! —l

1. LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY
2. PHYSICAL RECORD BEGINNING IN MIODLE OF ADU CANNOT SPAN ADU BOUHDARY

2277257

Figure 2-7. Sequential Files: Physical Record Size > ADU Size > Sector Size

214 2270521-9701

Operating System Concepts

Variable length records are not allowed.
Blank suppression and blank adjustment are not allowed.

Deleted records in a relative record file are flagged by COBOL with a hexadecimal FF
(>FF) in the first character of the record. These flagged records are ignored by COBOL
during sequential read operations. Therefore, data records should not contain binary
data in the first character position. The concept of deleted records is not recognized by
the file management of the operating system.

Record-level locking is supparted.

Relative record files can be expanded by adding a record or records whose record
number is greater than the highest record number currentiy in the file. During this opera-
tion, any record between the current last record and the new last record is added to the
file. Each of the deleted records has >FF in the first character position, flagging the
records as being deleted. All records between the lowest and highest record numbers on
the file must be present as either data records or deleted records (place holders) in order
to locate any given record on a random 1/0 request.

Each record is uniquely identified by its position. The operating system increments the caller's
record number after each read or write to allow sequential access. One EOF record is maintained

wherever
requested

it was last specified by a program. To access record number n, record number n is
. The range of record numbers is from 0 to one less than the number of records in the

file. The maximum number of records in a relative record file is 2 to the 24th power.

2722 C

reating Relative Record Flles. Consider the following rules when creating relative

record files:

2270521-9701

Logical record length must be less than or equal to the physical record length.
Logical records can span sector boundaries.

Logical records cannot span physical records.

Physical records must begin on sector boundaries.

Physical records beginning in the middle of an ADU cannot span ADU boundaries.

Physical records should be an integral multiple of sectors.

215

Operaling System Concepls

Figure 2-8 shows both a file description for a relative record file in a COBOL program and the crea-
tion of a relative record file using the Create Relative Record File (CFREL) SCl command.

SELECT REL-EMPLOYEE
ASSIGN TO RANDOM, '"EMPL"
ORGANIZATION RELATIVE
ACCESS RELATIVE
RELATIVE KEY REL-KEY
FILE STATUS REL-STATUS.

FD REL-EMPLOYEE LABEL RECORDS STANDARD.
01 REL-RECORD.

02 SOCIAL-SECURITY PIC X{(9).
02 EMPLOYEE-NAME.

03 EMPLOYEE-FIRST-INITIAL PIC X.

03 EMPLOYEE-SECOND-INITIAL PIC X.

03 EMPLOYEE-LAST-NAME PIC X(20).
02 REST-O0F-DATA PIC X(113).

WORKING-STORAGE SECTION.
01 REL-KEY PIC 9(6).

CREATE RELATIVE RECORD FILE
PATHNAME:' EMPL

LOGICAL RECORD LENGTH: 144
PHYSICAL RECORD LENGTH:
INITIAL ALLOCATION:
SECONDARY ALLOCATION:

EXPANDABLE ?: YES

FORCED WRITE ?: NO

Figure 2.8. Relative Record File Description and Creation

2-16 22705218701

Operaling System Concepls

To minimize wasled disk space, choose the physical record length (PRECL) such that it is one of
the following: either It Is the largest integral multiple of the logical record size that is less than or
equal to the ADU size, or It is an integral multiple of the ADU size.

The following tigures illustrate the relationships between the logical record, physical record, sec-
tor, and ADU sizes. In all cases, some disk space is wasted; the amount depends on the physical
record size chosen. Each figure defines the relationship between logical record, physical record,
sector, and ADU sizes. The boxed information represents alinear description of the logical records
on afile, Below the logical records are physical record, sector, and ADU divisions of the data.

Figure 2-9 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is less than the sector size, and the seclor size Is less than the ADU size.
Space is wasted within each sector because the physical record must begin on the next sector
boundary.

o Lo A oo Lo WD T Lo U

1,2 ,2 2
jo— PHYSICAL = l#— PHYSICAL —» [— PHYSICAL -
eam— SECTOR op————— SECTOR I SECTOR —_—
ADU
NMOTES:

1. LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD
2. PHYSICAL RECORD MUST BEGIN ON SECTOR BOUNDARY

2277258

Figure 2-9. Relative Record Files: Physical Record Size < Sector Size < ADU Size

2270521-9701 2.47

Operating System Concepts

Figure 2-10 Indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is equal to the sector size and the sector size is less than the ADU size. In this
case, if a logical record does not fit into the remaining space of a physical record, the space is
unused and the logical record begins in the next physical record.

Figure 2-11 indicates the relationship between physical record, sector, and ADU sizes when the
sector size is less than the physical record size and the physical record size is less than the ADU
size. In this case, the physical record is two times the seclor size. More than one sector for every
ADU is wasted because there is not enough space in the ADU to hold another physicai record.

RO RO2 RO3 / /04 ROS ROG f RO7 ROB RO9 / /
] 1 1

l———— PHYSICAL JEN—— l———— PHYSICAL B — P PHYSICAL —_—
e SECTOR —_— j——— SECTOR — l———— SECTOR —]
d ADU

NOTE:

1. LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD
2277259

Figure 2.10. Relative Record Files: Physical Record Size = Sector Size < ADU Size

RO1 | RQ2 I RO3 | RO

4 [ROS

wos [///,

T

PHYSICAL

PR SECTOR _.l |._ SECTOR

2277260

Figure 2-11,

2418

NOTES;

ADU

-

SECTOR

——

1. LOGICAL RECORD SPANS SECTOR 8OUNDARY

2, LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

3, PHYSICAL RECORD BEGINNING IN. MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

Relative Record Files: Sector Size < Physlcal Record Size < ADU Size

2270521-971

Operaling System Concepls

Figure 2-12 indicates the relationship between physical record, sector, and ADU sizes when the
sector size is less than the physical record size and the physical record size is equal to the ADU
size. When the physical record slze Is not specified at file creation, the default value used is the
defined default of the directory on which the file is created. Logical records can span only sector
and ADU boundaries. If a logical record does not fit into the space of a physical record, the space
is unused and the logical record begins on the next physical record.

Figure 2-13 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is greater than the ADU size and the ADU size is greater than or equal to the
sector size. In this case, space is wasted on the disk because the remaining space of the ADU is
too smail to contain another physical record. Therefore, the next physical record must begin on
the next ADU boundary. Note that the logical record must span to the next physical record, which
begins on the nexi ADU.

ROV ROZ2 RO3 RO A ROS ROG6 RO7 ROG RO9 RiO (//
1 1 2
PHYSICAL
l——— SECTOR I l— SECTOR JI |L SECTOR e
ADU
NOTES!

1, LOGICAL RECORD SPANS SECTOR BOUNDARY
2. LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

2277261

Figure 212, Relative Record Files: Sector Size < Physical Record Size = ADU Size

wor [moa [nos [woa | wos | wes | wor YAl U/////11[/IIINIIIIIIII

PHYSICAL
le— SECTOR _+_ SECTOR .—+— SECTOR —pla— SECTOR —+— SECTOR .-+— SECTOR —j
s ADU ADU I
NOTES!:

1, LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD
Z, PHYSICAL RECORD BEGINNING IN MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

2277262

Figure 2-13. Relative Record Files: Physical Record Size > ADU Size = Sector Size

2270521-9701 2.19

Operating System Concepls

2.7.2.3 Special Types of Relative Record Files. There are three special types of relative record
files available: directory, program, and image files. These files provide special interface mecha-
nisms that are used primarily for memory images, memory swapping, and diagnostic dumps.

* Directory files — Contain names of and pointers to other files

. Program files — Contain program images and an internal directory of the images

. Image files — Special-purpose files used primarily by the operating system for memory
images, memory swapping, and diagnostic dumps

None of these special types of relative record files can be accessed through COBOL programs.
2.7.3 Key Indexed Files (KIF)
A KIF allows random access to its records via a key. The key is a character string of up to 100 char-
acters, located in a fixed position within each file record. From 1 to 14 individual keys can be speci-
fied. For example, the records in an employee file can be accessed by keys that indicate the
employee's |D, name, and social security number.
Keys can overlap one another, with certain restrictions, within the record. Although the keys can
be structured anywhere within a record, they must appear in the same relative position in all
records in the file. One key must be specified as the primary key; the other keys are secondary
keys. The primary key must be present in all records, but secondary keys are optional.
In addition to supporting random access, KIFs include the following characteristics:

» Records can be accessed sequentially in the sort order of any key.

. At file creation, any key can be designated as allowing duplicates, which means that two
or more records in the file can have the same value for this key.

. Al file creation, any key excepl the primary kéy can be designed as being modifiable,
This means that when a record is being rewritten, the key value may change. Also, a sec-
ondary key value that is missing In the record can be added later on a rewrite.

. Alternate keys cannot overlap the primary key.

. Alternate keys cannot overlap the first character position of any other alternate key.

* Records can be of variable length.

* Astartis allowed on the first portion of a key.

2-20 2270521-9701

Operaling System Concepls

. Records are automatically blank-suppressed.
° Record-level locking Is supperted.
. The file is expanded dynamically allocating space when needed.

. File integrity is maintained through pre-image logging of modified blocks. Before a
record is modified on disk, it is copied to a backup area in the file overhead area. Conse-
quently, system failures cause the loss of only the last 1/0 operation.

. Records of odd or zero length are not allowed.

The physical record length must be greater than or equal to 22 plus the logical record length. For
maximum efficlency, the physical record length should equal the ADU size of the disk on which
the file is to reside or a multiple of the ADU size.

To ensure that a sufficient buffer is allocated at execution time, the COBOL program source
module must define the maximum record size in the file description. If the file was created using
the average blank-suppressed logical record length, an Invalid record length error is returned on an
Open request. Under these conditions, the USE procedures of the DECLARATIVES can be speci-
fied to intercept and ignore the invalid record length error returned on the OPEN request. (Refer to
Section 12 for more details on intercepting and ignoring /O errors.) The T/ COBOL Reference
Manual contains a detailed explanatlon of the USE and OPEN statements and the keyword
DECLARATIVES.

If a KIF Is created with the Create Key Indexed File (CFKEY) command and the KIF is to be used in
COBOL programs, the keys must be defined in the following order:

. Primary key

¢ Alternate key with the lowest displacement

¢ Alternate key with the next lowest dlsplacement
+ Alternate key with the highest displacement

The number of keys must exactly match the number of keys declared in the source program. The
key lengths, flags (modifiable and duplicate attributes), and offsets must also match those
declared in the program. The primary key cannot have duplicates or be modifiable. Alternate keys
must all be modifiable and can have duplicates only when the duplicates are declared as such in
the program. Alternate keys can overlap in any character position except the first, thereby
preventing any two keys from having the same displacement, Alternate keys must never overiap
the primary key In any character position. |If any of the preceding conditions fails to match at open
time, an invalid open error cccurs (slatus code 94).

2270521-9701 2-21

Operaling Sysiem Concepts

Figure 2-14 shows both the file description for a KIF in a COBOL program and the creation of the
KIF using the Create Key Indexed File (CFKEY} SCI command. After the KIF is created, use a Map
Key Indexed File (MKF) SCl command to view the key attributes.

2:22

SELECT EMPLOYEE-MASTER

ASSIGN TO RANDOM, "EMPL"

ORGANIZATION INDEXED

ACCESS RANDOM

RECORD KEY SOCIAL-SECURITY

ALTERNATE RECORD KEY EMPLOYEE-NAME

ALTERNATE RECORD KEY EMPLOYEE-LAST-NAME
WITH DUPLICATES

FILE STATUS EMPLOYEE-STATUS.

FD EMPLOYEE-MASTER LABEL RECORDS STANDARD.
01 EMPLOYEE-RECORD.

02 SOCIAL-SECURITY PIC X(9).
02 EMPLOYEE-NAME.

03 EMPLOYEE-FIRST-INITIAL PI1C X.

03 EMPLOYEE-SECOND-INITIAL PIC X.

03 EMPLOYEE-LAST-NAME PIC X(20).
02 REST-OF-DATA PIC X(113).

CREATE KEY INDEXED FILE
PATHNAME: EMPL
LOGICAL RECORD LENGTH: 144
PRYSICAL RECORD LENGTH:
INITIAL ALLOCATION:
SECONDARY ALLOCATION:
MAXIMUM SIZE: 1000

KEY DESCRIPTION FOR KEY NUMBER 1
START POSITION: 1
KEY LENGTH: 9
DUPLICATES?: NO
MODIFIABLE?: NO
ANY MORE KEYS?: YES

Figure 2-14. KIiF Description, CFKEY Creation, and MKF Llisting (Sheet 1 of 2)

2270521-9701

Operating System Concepts

KEY DESCRIPTION FOR KEY NUMBER 2
START POSITICN: 10
KEY LENGTH: 22
DUPLICATES?: NO
MODIFIABLE?: YES
ANY MORE KEYS?: YES

KEY DESCRIPTION FOR KEY NUMBER 3
START POSITION: 12
KEY LENGTH: 20
DUPLICATES?: YES
MODIFIABLE?: YES
ANY MORE KEYS?: NO

FILE MAP OF .MASTER
TODAY IS 09:00:41 FRIDAY, SEPTEMBER 26, 1980

KEYS
START DUPLICATES
KEY COLUMN LENGTH MODIFIABLE ALLOWED
1 1 9 N N
2 10 22 Y N
3 12 20 Y Y

Figure 2-14. KIF Description, CFKEY Creation, and MKF Listing (Sheet 2 of 2)

2270521-9701 2-2312.24

3

Building a COBOL
Source Program Module

3.1 GENERAL

The initlai phase of COBOL program development involves building the program source module.
This process requires preparing the necessary directories and files and entering the program
source code (presumably via the text editor).

3.2 DIRECTORY AND FILE PREPARATION

Table 3-1 lists and describes the files that are typically used when developing and executing
COBOL programs. (Optional procedures may require additional files.)

Table 3-1. Files Required for Program Development
File Descriptlion
Source file Contains program source moduie code, which is created by
using the text editor and input to the COBOL compiler.
Object flle Contains program cbject module code, which is output from the

Compiler listing file

Link control file

Link edltor listing

Program file

COBOL compiler and input to the link editor or the Execute
CODOL Program (XCP) command. (Refer 1o Section 6 for details
about the XCP command.)

Contains the program source module listing with any errors
detected by the COBOL compiler. The COBOL compiler pro-
duces this listing.

Conialns instructions for the link editor, such as which object
modules, run-time libraries, user libraries, and external routines
are to be linked.

Contains the link map, which is produced by the link editor.

The user's program {ile; contains programs in image format.

2270521-9701

31

Building a COBOL Source Program Module

3.3 ALTERNATE DIRECTORY STRUCTURES

File organization varies according to the requirements of a specific installation. Several methods
of organization are possible, including the following:

U Organization according to related programs
» Organization according to file type

3.3.1 Organization by Programs

When files are organized by programs, all necessary files for a given program are located in a
single directory; the directory name is associated with the program name. In the following
example, all files for PROGRAMA are in directory PROGA, and all files for PROGRAMB are in direc-
tory PROGRB:

VOLUME.PROGA.SRCFILE VOLUME ., PROGB.SRCFILE
VOLUME .PROGA.OBJFILE VOLUME ,.PROGB.OBJFILE
VOLUME . PROGA,LSTFILE VOLUME.PROGB.LSTFILE
VOLUME .PROGA.CTRFILE VOLUME.PROGB.CTRFILE
VOLUME .PROGA . LINKMAP VOLUME .PROGS . LINKMAP
VOLUME .PROGA.PRGFILE VOLUME . PROGB.PRGFILE

3.3.2 Organization by File Type

In the diagram in Figure 3-1, files are arranged under a single directory (PROJECT). Subdirectories
are created for source, object, listing, link control, and link map files. This type of file organizaticn
allows for a network of programs where the same module may be linked into ditferent programs.

PROIJECT
l I I |
SOURCE OBJECT LIST LINK LINKMAP PROG
MODA MOD1 MOD1 LINKA LINKA
MOD?2 MOD2 MOD2 LII!IKB LINKB
MOD3 MOD3 MOD3

Figure 3-1. Organization of Files in Directory

3.4 CREATING DIRECTORIES AND FILES

To create a directory or subdirectory, enter the Create Directory File {CFDIR) SC| command. The
following display appears:

CREATE DIRECTORY FILE
PATHNAME: pathnamed (%)
MAX ENTRIES: integer
DEFAULT PHYSICAL RECORD SIZE: [integer]

3.2 2270521-9701

Buifding a COBOL Source Program Module

Assume that the pathname has a volume name of VOLUME and a directory name of SOURCE.
SOURCE will contain all source files for programs. Respond to the prompt PATHNAME by entering
VOLUME.SOURCE. Respond to the prompt MAX ENTRIES by entering the maximum number of
entries (files and subdirectories) that the directory may contain.

Files that are output from utilities {(such as the text edilor or the compiler) need not be created
prior to executing the utility; the utility automatically creaies the files if they do not already exist.
However, pathnames must be specified before termination of the utility. Pathnames must be
unique uniess the information in a file is being replaced. Directories are not automatically created.
The compiler automatically creates the compiler listing file and the object file if they do not
already exist. Since the link control file is a utility input file, it must be created (usually via the text
editor) prior to executing the link editor.

3.5 BUILDING THE PROGRAM MODULE VIATHE TEXT EDITOR

COBOL source program modules are generated on a VDT using SCI. Editing on the VDT occurs on
a page basis; each page can have any consecutive 24 lines displayed on the screen. You can edit
any record displayed on the screen by positioning the cursor anywhere within the line that con-
tains the record. You can insert records between any lines, and you can insert or delete them in
any order. Also, you can inserl, delete, or modify characters within a line. Use the Show Line (SL})
SCIl cormmand and the F2 (Roll Up Function), F1 (Roll Down Function), Previous Line and Next Line
control keys to access specific lines, records, or characters.

To enter a source program module via the text editor (assuming a directory has been created pre-
viously), enter the Initiate Text Editor (XE) SCl command, and press the Return key. The following
display appears:

EXECUTE TEXT EDITOR
FILE ACCESS NAME:
EXCLUSIVE EDIT?: YES
LINE LENGTH: 80

Press the Return key to indicate that no file exists. The Text Editor clears the VDT screen and dis-
plays the following in the first four columns of row 1 with the cursor in column 1, row 1:

*EQF

This display indicates that the end-of-file {(EOF} record is the only record in the file. To begin
entering data, press the Return key. Notice that a blank line appears before the *EOF notation.
Press the Command key and enter the Modify Tabs (MT) SCl command to adjust the tabs for cod-
ing. Set the tabs at 1, 8, 12, 24, and 73 (standard tabs for a COBOL coding sheet), and press the
Return key. Now, begin entering the source cede shown in Figure 3-2. Each time you enter a new
line and press the Return key, a new blank line appears beneath the previously entered line of
information.

2270521-9701 33

Building a COBOL Source Program Module

34

* % % ¥ ¥

IDENTIFICATION DIVISION.
PROGRAM-ID., FUNCTION.

THIS PROGRAM WAS DESIGNED AS A FUNCTIONAL
DEMONSTRATION TEST FOR CHECKING FUNCTION KEY
ACCESSIBILITY.

FUNCTION KEYS MUST HAVE BEEN ACTIVATED VIA THE
SCI EXECUTION COMMAND.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE—COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.
DATA DIVISION.
WORKING-STORAGE SECTION.

01
01
01
01
01

ACTION PIC XX.

FUNC PIC 99,

X PIC 599 COMP-1.

XX PIC S99 COMP-1.

HEADS.

02 FILLER PIC X(21) VALUE
"0l - FAM.

02 FILLER PIC X(21) VALUE
ng2 - f2',

02 FILLER PIC X(21) VALUE
“03 - F3".

02 FILLER PIC X{(21) VALUE
04 - F4'.

02 FILLER PIC X(21) VALUE
"Q5 - FS5',

02 FILLER PIC X(21) VALUE
"06 - F6".

02 FILLER PIC X(21) VALUE
"o7 - F7™.

02 FILLER PIC X(21) VALUE
"8 - F8".)

02 FILLER PIC X(21) VALUE
09 - F9,

02 FILLER PIC X{(21) VALUE
"0 - F10".

02 FILLER PIC X{(21) VALUE
11 - F11".

02 FILLER PIC X(21) VALUE
n{2 - F12".

02 FILLER PIC X(21) VALUE
"13 - F13n9,

02 FILLER PIC X{(21) VALUE
"4 - F14M.

02 FILLER PIC X{21) VALUE
"40 - Command".

Figure 3-2. Sample COBOL Program Source Module —
VOLUME.SOURCE.EXAMPLEZ2 (Sheet 1 of 2)

2270521-9701

2270521-9701

02 FILLER
"49 -

02 FILLER
l|52 -

02 FILLER
IIS3 -

02 FILLER
IIS[“ -

02 FILLER
"55 -

02 FILLER
H56 -

02 FILLER
"5? -

02 FILLER
Il58 -

02 FILLER
lI59 -

02 FILLER
ll61 -

02 FILLER
H64 -
01 HEADINGS R

02 HEAD PIC X(21) OCCURS 26.

PROCEDURE DIVIS
MAIN-PROG.
RD-INPUT.

DISPLAY "COBOL FUNCTION KEYS TEST"
LINE 1 POSITION 20 ERASE.

PIC X{(21) VALUE
Print'.

PIC X{(21) VALUE
Previous Line".
PIC X{(21) VALUE
Next Line".

PIC X(21) VALUE
Home''.

PIC X{(21) VALUE
Next Field".
PIC X(21) VALUE

Previous Field".

PIC X{(21) VALUE
Skip".

PIC X{(21) VALUE
Forward Tab".
PIC X(21) VALUE

Initialize Input".

PIC X(21) VALUE
Erase Input'.
PIC X(21) VALUE
Enter™.
EDEFINES HEADS.

ION.

Buifding 2 COBOL Source Program Module

PERFORM DSP-13 THRU E-13 VARYING X FROM 1

BY 1 UN

TIL X > 13.

PERFORM DSP-26 THRU E-26 VARYING X FROM 14

BY 1 UN

DISPLAY “DEPRESS DESIRED KEY' LINE 20 POSITION 20.

TIL X > 26.

PERFORM GET-FUNC UNTIL ACTION = "X".

STOP RUN.
GET-FUNC.

ACCEPT ACTION LINE 20 POSITION 40

ON EXCE

PTION FUNC

DISPLAY FUNC LINE 20 POSITION 40.

IT '"CR' TO CONTINUE,

POSITION 20.

lxl

ACCEPT ACTION LINE 22 POSITION 54.
" LINE 20 POSITION 40,

=X + 1.

TO STOP"

DISPLAY HEAD (X) LINE XX POSITION 20.

DISPLAY "H
LINE 22

DISPLAY ™
DsSpP-13.

COMPUTE XX
E-13. EXIT.
DSP-26.

COMPUTE XX

=X - 12.

DISPLAY HEAD {(X) LINE XX POSITION 45.

E-26. EXIT.
END PROGRAM.

Figure 3-2. Sample COBOL Program Source Module —
VOLUME.SOURCE.EXAMPLE2 (Sheet 20t 2)

3-5

Bullding a COBOL Source Program Module

After entering the program source module, check for errors. To return to the first page of the
source code, press the Command key and enter the SL command. The following display appears:

SHOW LINE
LINE: 1

Press the Return key to accept the initial value of 1. To review the source code, use the F1 and F2
keys. Each time the F1 key is pressed, the display scrolls forward; each time the F2 key is pressed,
the display scrolls backward. To change the number of lines that are scrolled, enter the Modify
Roll (MR} 8CI command, and press the Return key. The following display appears:

MODIFY ROLL
NUMBER OF LINES TO ROLL: 23

A different value may appear as the initial value of this command prompt. In any case, the
response to this prompt should be 23. This allows the last line of the display to appear as the first
line on the next display when the F1 key is pressed or the first line of the display to appear as the
last line on the next display when the F2 key is pressed. Now, press the Return key.

Gertain keys can be helpful when verifying the source code. Each of these keys may be used in
conjunction with the Repeat key. The keys and their functions are as follows:

. Previous Line — Moves the cursor up one line from the current line. If the cursor is on
the top line, the screen scrolls backward one line.

. Next Line — Moves the cursor down one line from the current line. If the cursoris on the
bottom line, the screen scrolls forward one line.

. Previous Character — Moves the cursor to the left one character from the current posi-
tion of the cursor.

. Next Character — Moves the cursor 1o the right one character from the current position
of the cursor.

If no errors are found, press the Command key again and enter the Quit Edit (QE) SCI command.
The following display appears:

QUIT EDIT
ABORT?: NO

A YES response to the prompt ABORT? terminates the text editor without any modification to the
input file; if no input tile was specified in the XE command, no new file is created. Any modifi-
cations made or dala entered are lost when the response to the ABORT? prompt is YES. Accept
the initial value (NO) and press the Return key. The following display appears:

QUIT EDIT
OUTPUT FILE ACCESS NAME: VOLUME.SOURCE.EXAMPLE2
REPLACE?: YES
MOD LIST ACCESS NAME:

3-6 2270521-9701

Building a COBOL Source Program Module

Enter a valid pathname such as VOLUME.SOURCE.EXAMPLE?2 for the output file access name,
and press the Return key. The response to the prompt REPLACE? determines whether the desig-
nated output file is to be replaced by the edited file. |f the response is NO and the output file
exists, the edited file does not replace the existing file. If the response is NO and no file exists by
that name, a new file is created. If the response is YES, the edited file replaces the specified file; if
no file exists by that name, a new file is created. Press the Return key in response to the prompt
MOD LIST ACCESS NAME. The program is now entered and has a file name of
VOLUME.SOCURCE.EXAMPLE2.

When you are editing a source file, the functions of various keys can be helpful. For instance, the
F4 key duplicates information on a previous line to a preset tab when the cursor is placed beneath
the line to be copied. The F5 key acts as a tab key and clears the line to the preset tab positions,
and the F6 key displays or suppresses line numbers. When line numbers are displayed, only 74
characters of each record are displayed. When line numbers are suppressed, a full 80 characters
are displayed. Other keys of importance include the following:
. Initialize Input key — Inserts a blank line above the line containing the cursor
. insert Characier key — Inseris characters at the current cursor position and moves all
characlers that are to the right of the cursor one position to the right (truncates charac-
ters if line is full)

. Delete Character key — Deletes characters at the current cursor position and moves ali
characters that are to the right of the cursor one position to the left

¢+ Home key — Positions the cursor in row 1, column 1 of the display
. Erase Field key — Replaces ali characters in a line with bianks

. Erase Input key — Deletes the line on which the cursor is positioned and rolls up all
lines beneath it

Certain SCI commands c¢an also be helpful when ediling a file. These commands include the
following:

. FS (Find String) — Locates a predefined string in the source file for a specified number
of occurrences

. DL (Delete Lines) — Deletes certain lines specified by the user

. ML (Move Lines) — Moves specified lines in a file and inserts them after a specified line
number

¢+ CL(Copy Lines} — Duplicates the specified lines and inserts them after a specified line
number

. IF (Insert File) — Inserts an existing file into the file that is being edited, after a specified
line number

2270521-9701 3-7/13-8

4

Compilation

4.1 GENERAL

Compilation is the process of translating a COBOL program source module into a series of instruc-
tions (interpretive object code) comprehensible to the computer. The interpretive object code is
interpreted by the COBOL run-time interpreter at execution time. (Refer to Section 5 for a descrip-
tion of the COBOL run-time interpreter.)

4.2 COMPILER EXECUTION

To execute the COBOL compiler, enter the Execute COBOL Compiler in Background (XCC} com-
mand for background compiies or the Execute COBOL Compiler in Foreground (XCCF) command
for foreground compiles. The XCC command allows the terminal to be used for foreground pur-
poses during the background compilation.

4.2.1 Execute COBOL Compilerin Foreground (XCCF)
For the XCCF command, the following prompts appear with the indicated initial values:

EXECUTE COBOL COMPILER FOREGROUND <VERSION: L.R.V YYDDD>
SOURCE ACCESS NAME: pathnamed
OBJECT ACCESS NAME: pathnamed
LISTING ACCESS NAME: pathnamed
OPTIONS: [{D/I/M/0/X}]

PRINT WIDTH: integer (80)
PAGE SIZE: integer (55)
PROGRAM SIZE {(LINES): integer {1000)

Press the Return key after each entry.

SOURCE ACCESS NAME — Enter the input device name, pathname, or synonym for the file that
contains the source module to be compiled.

OBJECT ACCESS NAME — Enter the pathname or synonym of the output object file. The compiler
places the generated object code in the object file. The pathname must refer to a mass storage file
with relative record organization. If the file does not exist, the compiler automatically creates a rel-
ative record file for the object file. If the file exists but is not a relative record file, the compiler ter-
minates and an error is generated. (Refer to Appendix C for a listing of the compiler error
messages.) If DUMY is specified for the object access name, the output object file is not
generated.

LISTING ACCESS NAME — Enter the listing device name, pathname or synonym. The name
entered is the name of the device or sequential file to which the compiler outputs the requested
listings. If a file is specified and does not exist, the compiler automatically creates a sequentlal file
for the listing file. Enter ME to have the listing displayed on the screen as it is generated.

2270521-9701 41

Compilation

OPTIONS — To request options, enler (without intervening commas) one or more of the characters
listed in Table 4-1.

Table 4-1. COBOL Compiler Options

Character Option
D Debug
| Information Message
M Data Maps
0 List Object
X Cross-Reference Listing

Entering the M option causes alisting similar to Figure 4-1.

The order in which the options are listed is not important. However, invalid options generate warn-
ings and then are ignored. Descriptions of the options are as follows:

. Debug Option (D) — Causes the compiler to compile source statements that have a D in
character position seven, along with rest of the statements in the program source
module. Otherwise, the source statements with D in position seven are treated as
comments.

U Information Message Option (I) — Causes the compiler to list any informative mes-
sages. These messages are not errors or warnings. See Table B-3 in Appendix B for the
list of informative messages.

. Data Maps Option (M) — Causes the data map to be listed as part of the compiler listing
(listing access name). Otherwise, no data map is listed. Refer to Appendix E for a
COBOL object listing example including data maps.

. List Object Option (0) — Causes the compiler to include the object code in the listing

file, following the listing of the corresponding source statement. Refer to Appendix E for
a COBOL object listing example including object code.

4-2 2270521-9701

Compilation

¢+ Cross-Reference Listing Option (X) — Causes the compiler to produce a cross-reference
listing following the source listing or data maps if requested. Data names, index names,
condition names, file names, section names, and paragraph names (contained in the
Procedure Division of the program) are listed in the cross-reference. The line numbers of
all appearances of a name are printed to the right of the name. When a line number is
enciosed in slashes (/nnnn/), the statement on that line defines the item. When a line
number is enclosed in asterisks (*nnnn*), the statement on that line may alter the con-
tents of the item. When a line number Is enclosed in blanks { nnnn), the statement on
that line references the Item.

PRINT WIDTH — Enter the appropriate print width to specify the number of characters to be for-
matted on aline of the listing. The compiler truncates the compiler listing lines if the print width is
less than the compiler-generated line iength. The initial value print width is 80 positions.

PAGE SIZE — Enter the maximum number of print lines per page for the compiler listing file. The
initial value page size is 55 lines per page.

PROGRAM SIZE (LINES) — Enter an estimate of the number of program source module lines con-
tained in the program source module. This estimate determines the amount of initial memory used
in the compilation. If more memory is requested, compilation Is faster provided memory is avail-
able. The initial value program size is 1000 lines.

After the program module is compiled, if an error occurs, correct the error and recompile the
source module before attempting to link edit or execute the code. When the compilation com-
pletes successfully, the following message appears:

COBOL COMPILER COMPLETED, 0 ERRORS, O WARNINGS

22705219701 4.3

Compifation

DXCBL

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:8S OPT=M PAGE

SOURCE ACCESS NAME:

OBJECT ACCESS NAME: DUMY
LISTING ACCESS NAME: MANUAL.PG.LST.FIG0401
OPTIONS: M
PRINT WIDTH: 80
PAGE SIZE: 55
PROGRAM SIZE (LINES)Y: 1000
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE
LINE DEBUG PG/LN -
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. FUNCTION.
3 * THIS PROGRAM WAS DESIGNED AS A FUNCTIONAL
4 * DEMONSTRATION TEST FOR CHECKING FUNCTION KEY
5 e ACCESIBILITY.
6 * FUNCTION KEYS MUST HAVE BEEN ACTIVATED VIA THE
7 * SCI EXECUTION COMMAND.
8 ENVIRONMENT DIVISION.
9 CONFIGURATION SECTION.
10 SOURCE-COMPUTER., TI-990,
11 OBJECT-COMPUTER. TI-990.
12 DATA DIVISION.
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE
LINE DEBUG PG/LN T -
13 /
14 WORKING-STORAGE SECTION.
15 01 ACTION PIC XX.
16 01 FUNC PIC 99.
17 01 X PIC S99 COMP-1.
18 01 XX PIC S99 COMP-1.
19 o1 HEADS.
20 02 FILLER PIC X{(21) VALUE
21 "o1 - F1.
22 02 FILLER PIC X(21) VALUE
23 "g2 - F2".
24 02 FILLER PIC X(21) VALUE
25 "03 - F3".
26 02 FILLER PIC X(21) VALUE
27 "04 - F4'.
28 02 FILLER PIC X(21) VALUE
29 "05 - F5".
30 02 FILLER PIC X(21) VALUE
31 "06 - Fo".
32 02 FILLER PIC X(21) VALUE
33 "07 - F7".

4-4

MANUAL.PG.SRC.FIG0401

Figure 4-1. Sample COBOL Compiler Listing (Sheet 1 of 4)

22705219701

DXCaL

LINE
69
70
71
72
73

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS

FILLER PIC X{(21) VALUE
"08 - F8",
FILLER PIC X(21) VALUE
"9 - F9".
FILLER PIC X(21) VALUE
"0 - F10".
FILLER PIC X(21) VALUE
"1 - F1v,
FILLER PIC X{(21) VALUE

M2 - F12".
FILLER PIC X%(21) VALUE
"3 - F130,

FILLER PIC X{(21) VALUE
"4 - F14",

FILLER PIC X(21) VALUE
w40 - Command".

FILLER PIC X(21) VALUE
"49 - Print".

FILLER PIC X(21) VALUE
“52 - Previous Line'".
FILLER PIC X(21) VALUE
53 - Next Line".
FILLER PIC X(21) VALUE
"54 - Home'.

FILLER PIC X(21) VALUE
"S55 - Next Field".
FILLER PIC X(21) VALUE
"56 - Previous Field".
FILLER PIC X(21) VALUE
us7? - Skip".

FILLER PIC X(21) VALUE
"58 - Forward Tab".
FILLER PIC X{(21) VALUE

"59 - Initialize Input",

FILLER PIC X(21) VALUE

Compiiation

OPT=M

DEBUG PG/LN S

02

"41 - Erase Input".
FILLER PIC X(21) VALUE
“44 - Enter'.

01 HEADINGS REDEFINES HEADS.

02 HEAD PIC X(21) OCCURS 26.

Flgure 4-1.

2270521-9701

Sample COBOL Compiler Listing (Sheet 2 of 4)

4.5

Compliation

DXCBL
LINE
T4
75
76
77
78
79
80
81
82
83
B4
85
Bé
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

4.6

DEBUG

>0000
>0002
>0002

>000¢
>0020

>0034
>003cC
>0046
>0048
>0048

>005E

>0066
>006€E
>0078
>0078
>007E
>008E
>0090
>0090
>0096
>00A6

L.R.V YY.ODD COMPILED:MM/DD/YY HH:MM:SS oPT=M PAGE 3
PG/LN S S hessssesseranatacaananr v e s antans
/
PROCEDURE DIVISION.
MAIN-PROG.
RD-INPUT.

222ZZZ END PROGRAM.

GET-F

DsP-1

E-13.
DsSp-2

E-26.

DISPLAY '"COBOL FUNCTION KEYS TEST"
LINE 1 POSITION 20 ERASE.

PERFORM DSP-13 THRU E-13 VARYING X FROM 1
BY 1 UNTIL X > 13.

PERFORM DSP-26 THRU E-26 VARYING X FROM 14
BY 1 UNTIL X > 26.

DISPLAY "DEPRESS DESIRED KEY' LINE 20 POSITION 20.

PERFORM GET-FUNC UNTIL ACTION = "X".

STOP RUN.

UNC.

ACCEPT ACTION LINE 20 POSITION 40
ON EXCEPTION FUNC

DISPLAY FUNC LINE 20 POSITION 40,

DISPLAY “HIT 'CR' TO CONTINUE, 'X' TO STOP"
LINE 22 POSITION 20.

ACCEPT ACTION LINE 22 POSITION 54.

DISPLAY '* ' LINE 20 POSITION 40.

3.

COMPUTE XX = X + 1,

DISPLAY HEAD (X) LINE XX POSITION 20.

EXIT,

6.

COMPUTE XX = X - 12.

DISPLAY HEAD (X) LINE XX POSITION 45.

EXIT.
*#k END OF FILE

Figure 4-1. Sample COBOL Compiler Listing (Sheet 3 of 4)

2270521-97(H

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS oOPT=M PAGE
ADDRESS SIZE DEBUG ORDER TYPE NAME
>002A 2 ANS 0 ALPHANUMERIC ACTION
>002¢C 2 NSsu 0 NUMERIC UNSIGNED FUNC
>002€E 2 NBS 0 BINARY SIGNED X |
>0030 2 NBS 0 BINARY SIGNED XX
>0032 520 GRP 0 GROUP HEADS
>0032 520 GRP 0 GROUP HEADINGS
>0032 20 ANS 1 ALPHANUMERIC HEAD
READ ONLY BYTE SIZE = >01c8
READ/WRITE BYTE SIZE = >0248

OVERLAY SEGMENT BYTE SIZE = >0000
TOTAL BYTE SIZE = >0410
0 ERRORS

0 WARNINGS

Figure 4-1.

Sample COBOL Compiler Listing (Sheet 4 of 4)

4.2.2 Execute COBOL Compiler in Background (XCC)
For the XCC command, the following prompts appear with the indicated Initial values:

EXECUTE COBOL COMPILER <VERSION:
SOURCE ACCESS NAME:

OBJECT ACCESS NAME:

LISTING ACCESS NAME:

OPTIONS:

PRINT WIDTH:

PAGE SIZE:

PROGRAM SIZE (LINES):

L.R.V YYDDD>
pathnamed
pathnamed
pathnamed
[{D/I/M/0/%X}]
integer (80)
integer (55)
integer (1000)

Compilation

The parameters are the same as those for the XCCF command except that ME should not be used

as the listing access name.

2270521-9701

47

Compliation

43 COMPILER OUTPUT

The compiler output consists of the object file and the listing file. The object file contains the
object modules {interpretive code) generated by the computer. The reentrant code (instructions) is
generated as a group named PSEG. The nonreentrant code (data) is generated as a group named
DSEG. DSEGs are often referred to as $DATA. The object file may be executed by the run-time
interpreter or linked to another object module. The listing file contains the listing of the program
source code and lists any error messages detected by the compiler.

4.4 COMPILER COMPLETION CODES

The COBOL compiler returns a system completion code for the most severe dlagnostic
encountered in the compilation. The completion code is returned in the synonym $$CC. The values
and meanings of these codes are as follows:

Value Meaning

0000 No warnings or errors occurred
4000 Warnings occurred

B0O0O Errors occurred

The synonym $$CC should be checked in batch streams immediately after compiler execution.
3CC is used by other processors, and its integrity is not guaranteed after completion of the batch
stream or execution of another command.
4.5 COMPILER ERROR MESSAGES
The compiler generates user and system error messages. User error messages are included in the
compiler listing. Compilatlon of a program source module proceeds to the end of a program
module regardless of the number of errors found.
Errors that prevent proper execution of the COBOL compiler are system errors. When one of these
errors oceurs, the system displays an error message and terminates the execution of the compiler.
Refer to Appendix B for alisting of user and system error messages and their meanings.
4.6 COMPILER LIMITATIONS
Each of the following items is limited to 2047 entries:

. Level-88 condition names

¢ Nesting of IF statements

. Nesting of PERFORM statements

4.8 22705219701

Compifation

Using parameters in CALL statements

Unigue index names

Unique spellings (identifiers, paragraph/sectionf/internally generated labels)
Unique literal values

Unique identifiers {data names)

Unigue paragraph/sectionfinternally generated labels

Unique references to data items

In practice, because of interactions between different statements and related temporary infor-

mation du
ever, the [i

2270521-9701

ring the compilation process, the actual limits may be somewhat less than 2047. How-
mits for all practical purposes should be higher than typical program modules require.

4-9/4-10

5
Link Edit

51 GENERAL
Link editing is the process of preparing object modules for execution. It can also combine two or
more separately compiled object modules to form a single linked object module. This process is
performed by one of the operating system utilities, the link editor. The process of link editing
resoives external definitions and references between object modules.
Object modules do not always require linking before execution. They must be linked as a linked
object module if subroutines are present. (Refer to the section entitled Creating Linked Object
Modules.) Also, object modules must be linked to a program file when task and procedure seq-
ments or overlays are needed. (Refer to the section entitled Creating Program Images.)
The following features are supported with linked object modules:

s Callable subroutines

* COBOL program module segmentation

. Object file compression
The following features are supported on program files:

. Callable subroutines

. Reentrant user modules

» Shared procedure segments

¢ Overlay phases

. COBOL program module segmentation

2270521-9701 51

Link Edil

The diagram in Figure 5-1 shows the link edit and execution options available with COBOL pro-
grams. In the logical flow labeled A, no linking is necessary to execute an object module. (Refer to
Object Modules Execution in Section 6 for a description of how to execute object modules.) The
logical flow labeled B indicates that object modules must be linked when they contain CALL state-
ments. The linked object modules are then executed using the same SCl commands as used for
object modules. The logical flow iabeled C shows how to execute a program (task) installed in a
program file. {(Refer to Program Image Execution in Section 6 for a description of how to execute
program lmages on program files) The Execute COBOL Program (XCP) and Execute COBOL Pro-
gram in Foreground {XCPF) commands shown in Figure 5-1 reflect the method of executing com-
piled object files and linked object files. The Execute COBOL Task (XCT) and Execute COBOL Task
in Foreground (XCTF) commands show the method of executing linked program images on pro-
gram files,

User programs that operate under control of the operating system can include a combination of
data, procedures, and overlays as required. Programs are installed and stored on program files in
memory image form. When a program is activated, the images of its program segments are loaded
into available memory areas. The hardware mapping facility precludes the necessity of relocating
program images. Thus, the operating system can swap an active program to various locations In
memory several times during execution. This process assists in sharing memory and making CPU
execution time available (time-slicing). The hardware mapping capability also allows three sepa-
rately loaded program segments to be mapped into a single, logically contiguous program address
space.

5.2 OBJECT MODULES

The following paragraphs discuss object modules constructed using PSEGS and DSEGS. An
object module can contain a PSEG only, a DSEG only, or both a PSEG and a DSEG.

An object module using the PSEG/DSEG structure should contain only the following in the PSEG
portion:

. Unmodifiable instructions.
. Constant data.
If the object module contains a DSEG, the DSEG can contain modifiable data.

The Link Editor always positions the PSEG portion of an object module in the segment in which it
is included. It always positions the DSEG portion in the task segment.

5.2.1 Differences In the Treatment of Sharable Vs. Reentrant Modules

In a sharable object module, data outside the PSEG can be directly addressed if the ALLOCATE
command of the Link Editor is properly used during link edit. In a reentrant object module, all refer-
encing of data outside the PSEG must be by means of indirect addressing.

5.2.2 COBOL Object Modules

An object module generated by the COBOL compiler is constructed using the PSEG/ DSEG struc-
ture. PSEGs directly address data in DSEGs; therefore, the ALLOCATE command of the Link Editor
must be used in order to share COBOL object modules. COBOL object modules that use segmen-
tation cannot be shared.

5-2 2970521-9704

EXECUTE PROGRAM
(OBJECT FILE)

OVERLAY

COMPILATI|ON

Link Edit

COBOL
OBJECT

EXECUTE
PROGRAM

[+)
TASK

EXECUTE TASK
(PROGRAM FILE)

PHASES YES

RO

CONTAIN

CALL YES
STATEMENTS

NO

EXECUTE

LINK EDIT
STEP

IN FOREGROUND
OR BACKGROUND

BACKGROUND FOREGROUND

IN

XCP XCPF

BACKGROUND

XCP
2277264

Figure 5-1.

2270521-9701

OR BACKGROUND

EXECUTE
FOREGROUND

BACKGROUND

FOREGROUND

LINK EDIT
STEP

EXECUTE
IN FOREGROUND
OR BACKGROUND

FOREGROUND

XCT XCTF

EXECUTE COBOL PROGRAM BACKGROUND

XcP -

XCPF - EXECUTE COBOL PROGRAM FOREGROURD
XCT -~ EXECUTE COBOL TASK BACKGROUND
XCTF = EXECUTE COBOL TASK FOREGROUND

XCPF

Determining Link Edit Requirements for COBOL Programs

5.3

Link Edit

53 PROGRAM MAPPING

The hardware has a 20-bit memory address bus and can address 2048 bytes of memory. The logical
address space available to a task (program) is limited to 64K bytes. This difference is resolved by
mapping the task’s logical address space into the computer’s physical address space. The seg-
ments in physical address space need not be contiguous. Since the operating system maintains
separate mapping parameters for each task, each task may consist of one, two, or three segments
with a total extent of 64K bytes. Furthermore, several tasks may share one or two procedure seg-
ments. However, one segment is unique to each instance of a program. This unique segment is

called the task segment (T). The sharable segments of a task are called procedure segments (P1)
and (P2). Refer to Figure 5-2,

64K
BYTES
MAXIMUM

2277265

5-4

LOGICAL ADDRESS

SPACE

LA L L,

I d e ededd

ONE

// PROCEDURE
;;(-SEGMENT;éé i}

V PP 7727777,
/PROCEDURE
/ SEGMENT/

Ll L

T™WO

PPN

LSO,
TASK /

SEGMENT

A

_

T

PHYSICAL ADDRESS

SPACE

Figure 5-2. Memory Mapping

204 8K
BYTES
MAXIMUM

22705219701

Link Edit

5.4 PROGRAM FILES

All task and procedure segmenis and overlays are installed in structures referred to as program
files. These files are similar to the expandable relative record files and contain program images in
blocks corresponding to file records. An internal directory is maintained within the file itself. This
tnternal directory contains pointers 1o each Image on the file as well as relevant information about
the images. Figure 5-3 shows a listing of a program file produced by the Map Program File (MPF)
command.

FILE MAP OF VOLUME.PROG
TODAY IS 15:58:24 WEDNESDAY, JUN 04, 1980.

TASK SEGMENTS: MAXIMUM POSSIBLE = 255
ID NAME LENGTH LOAD PRI S P MR D E O C OVLY P1/SAME P2/SAME INSTALLED
01 TSKSEGT 136A 0000 3 R 04 3/26/80
02 TSKSEG2Z 7082 0000 3 R 5/ 7/80
03 TSKSEG3 12E2 4440 4 R 01/Y 5/17/80
04 TSKSEGA AFA4L 4060 4 R 06 0z/v 6/10/80
PROCEDURE: MAXIMUM POSSIBLE = 255
ID NAME LENGTH LOAD MDEWEC INSTALLED
01 PRCSEG1 4438 0000 5/17/80
02 PRCSEGZ 4050 0000 6/10/80
OVERLAYS: MAXIMUM POSSIBLE = 255
1D NAME LENGTH LOAD MAP 0O OVLY INSTALLED
01 ovLvl 05B6 0006 5/ 7/80
02 o0vLYZ2 13F4 0006 01 5/ 7/80
03 O0OVLY3 1394 0006 02 5/ 7/80
04 OQVLY4 1148 0006 03 5/ 7/80
945 OVLYS 119E AE9A 6/10/80
06 O0OVLYS 2E7C AE9A 05 6/10/80

Figure 5-3. Contents of a Program Flle

In Figure 5-3, task 1 consists of task segment 1. Task 2 consists of task segment 2 and overlays 1
through 4. Task 3 consists of task segment 3 and procedure segment 1. Task 4 consists of task
segment 4, procedure segment 2, and overlays 5 and 6. Various examples of how to create linked
program Images with one, two, or three segments are provided in the Section 5 paragraph entitled
Crealing Linked Object Modules.

54.1 Segments

Because the operating system maintains separate mapping parameters for each task, each task
can consist of one, two, or three segments with a total extent of 64K bytes. Furthermore, several
tasks may share one or two segments. One segment, however, is unique to each instance of a pro-
gram. This unique segment is called the task segment. The sharable segments of a task are called
procedure segments.

2270521-9701 5.5

Link Edit

5.4.1.1 Task Segments. Task segments contain the initial portion of the program such as entry
vectors, optional data, and optional program code. The task segment is unique to each separate
execution and cannot be shared. A task segment may be unlquely replicated from a single image
installed in a program file on disk for each activation. Replication of tasks, therefore, conserves
disk space and time by eliminating the need 1o install a copy of the same task with different IDs for
each possible concurrent actlvation of a program.

5.4.1.2 Procedure Segments. A COBOL task can be linked with two or fewer procedure seg-
ments. Code linked in the procedure segments can be shared by more than one task. A procedure
is considered sharable if more than one task can share one copy of the module during execution
without loss of data. Reentrant (or pure) procedures must contain only unmodifiable code and
constant data. Data modified by the reentrant module is usually stored in the task segment and
can be located at different addresses in the tasks without loss of data. The COBOL run-time Inter-
preter module is reentrant. All reentrant procedures are sharable.

The procedure portion (PSEG) of the object generated by the COBOL compiler is not reentrant. It
can be made sharable through the use of the ALLOCATE command in the link control file. (Refer to
paragraph 5.6.5 entitled Linking Two Procedure Segments With Multiple Task Segments for an
explanation of how to use the ALLOCATE command.) Procedure segments are linked by use of the
PROCEDURE command as referenced in the Link Editor Reference Manual. Sharing procedure
segments conserves memory by precluding the replication of a task's procedure segment.

Procedure segments installed on the system program file can be shared by tasks in any user pro-
gram file. Procedure segments installed on a user program file can be shared only by tasks on that
program file,

. The COBOL run-time interpreter (RCOBOL) is stored in the system program file. To conserve both
memory and disk space, it is recommended that COBOL tasks share this procedure.

If task 1 and task 2 reside on the same program file and each share the same procedure(s) (elther
on the same program file as the task or on the system program file), only one copy of any shared
procedure segment is in memory during execution of the tasks.

Conversely, if task 1 and task 2 are on separate program files and each has a copy of the same pro-
cedure(s), then two copies of the procedure(s) occur in memory during simultaneous execution of
the tasks.

Figure 5-4 shows a construct with multiple task and procedure segments on the same program
file. Each task segment is attached to the procedure segment. Therefore, sharing P1 and P2
reduces the amount of memory required to run the application. The task segments may be identl-
cal (that is, duplicated and/or executed from two different terminals) or they may be unique task
segments. Tasks on separate program flles that share the same procedure(s) on the system pro-
gram file require only one copy of the procedure(s) in memory during concurrent execution of the
tasks.

56 2270521-9701

TASK |
LOGICAL ADDRESS
SPACE

29/ LIPS

/ PROCEDURE

SEGMENT
L L L L L L L L L]

ONE
7 7777777777,
PROCEDURE
/ SE%%NT /
A//////////A

7% ///T/A/S/K/////

SEGMENT
4/////////%

2277266

;

,/””/”/4'

PHYSICAL ADDRESS
SPACE

P1

\{ Q

Figure 5-4. Multiple Tasks Sharing Same Pt and P2

Link Edit

TASK 2
LOGICAL ADDRESS
SPACE

NSO SNANNNY]

\ PROCEDURE \\

SEGMENT
%\ AARAANRNY

ONE
\\\\\\\\\\ \
N N

PROCEDURE
AR

SEGMENT
NN N
\\\ :RSJQ\‘\\

SEGMENT

\
N

Figure 5-56 shows another construct with multiple task and procedure segments on the same pro-
gram file. Task segments 1 and 2 share the first P2 with P1 while task segments 3 and 4 share the

second P2 with P1.

Figure 5-6 shows a construct with task and procedure segments on separate nonsystem program

files.

Figure 5-7 illustrates the importance of sharing procedure segments. The total memory required to
execute the group of tasks shown in Figure 5-7 is 215K bytes (1K = 1024 bytes) if procedure seg-
ments are not shared. If procedure segments are shared, only 130K bytes are required. Nearly half
of the memory required to execute this group of tasks has been eliminated. In many cases, such a
reduction can mean reduced swapping and, consequently, faster execution time.

2270521-9701

5-7

Link Edit

TASK 1
LOGICAL ADDRESS
SPACE

LSS LSS

/PROCEDURE
SEGMENT

ONE

s s s sr el 2l

/ FIITIIITTT
/ PROCEDURE

/ SE (::'ID{IV%N T
gIPPPIPIPIISY
5777777777577

TASK /

SEGMENT

//////////

N\

NN

TASK 3
LOGICAL ADDRESS
SPACE

THETRTEITRRTTT
PROCEDURE
SEGMENT
ONE

Ll
IIII'I'IIIIHI

2277267

Figure 5-5.

5.8

Lv_l

fff”””'

PHYSICAL ADDRESS
SPACE
P1y
20K
Pz,
10K
LLLLL
H+H-
e
151 N

i,

I_lll
I

Ty

5K

AN

TASK 2
LOGICAL ADDRESS
SPACE

\

\\\\\\\\\\
\ PROCEDURE
\ SEGMENT

\\\\\\\\&

N\
SRRRRRRNN

\PROCEDURE\
\ SEGMENT \J
WO

\ \\\\\\\\\%

\:5665555553\\

TASK

A

SEGMENT
k\\\\\\\\\\

TASK 4
LOGICAL ADDRESS
SPACE

——PROCEDURE
[—— SEGMENT
ONE

[l

—PROCEDURE
[SEGMENT
— TWO

1]

TASK
—— SEGMENT

e\

Multiple Tasks Sharing Same P1 but Different P2s

2270521-9701

Link Edit

PHYSICAL ADDRESS
// ////
//////
- / e
2
LOG]CItP?:?éRESS /////' % LOGIC}E_iEg%RESS

/P/R.:D/C/E/D{J/R/E// NIUNSANNN
e } \\\ \/ NN
/////////// P12 \\\\\\\\\\\
LTSI/, NN NCNONONRORRN
PROGEDURE / \\\ %FROCEDURE N
SEGMENT \ SEGMENT \
TWO /// \\\ TWO \\
DI A
{ ‘\\\\\\\\\\\ \
§ SEGMENT \

NN

N

LY

7 }\ \\\ R
//A//

\ \\\

N\

2277268

Figure 5-6. Multiple Tasks on Separate Program Files

2270521-9701 59

Link Edit

REENTRANT PROCEDURES REENTRANT PROCEDURES
NOT SHARED SHARED
P1 P2, P2, TASK TOTAL Pl P2, P2, TASK TOTAL
T, 20K 10K - 10K 40K 20K 10K - 10K 40K
Ty 20K 10K - 10K 40K - - - 10K 10K
Ty 20K - 15K SK 40K - - 15K 5K 20K
Td 20K - ISK SK A0K S o= - - 5K SK
TOTAL MEMORY 160K TOTAL MEMORY 75K
2277269

Figure 5-7. Comparison of Memory Requirements

5.4.2 Overlays

Overfays are parts of a task that reside on disk until explicitly requested by the task. When
requested, an overlay Is loaded into an area of the task reserved for overlays and replaces any
other overlay which may have been present at the time of the request. The use of overlays can
reduce the amount of memory required by a task segment.

An overlay phase is the smallest functional unit that can be loaded as a logical entity during exe-
cution. A phase consists of one or more object - modules. The structure of an overlaid program
depends on the relationships between the phases In the program. Phases that need not be in
memory at the same time can overlay each other. These phases are independent in thal they do not
reference each other, either directly or indirectly. Independent phases can be assigned the same
load address and are loaded into memory only when referenced. The Link Editor Reference Manual
contains adetailed description of overlays and overlay phases.

5,43 COBOL Module Segmentation

COBOL module segmentation is a type of overlay. COBOL segmentation provides a means of
communicating with the compiler when specifying requirements of the object program module
overlay. A task {program) may be structured to include COBOL segment overlays and also may
include overlay phases.

Any COBOL module in the task segment, including modules within overlay phases, can contain
segments. COBOL module segments are automatically generated in the object module when
specified in the source module. All segments are assigned the name COBOVY. Figure 5-8 shows a
map program file listing containing overlay phases with embedded COBOL segments. When creat-
ing program images on program files, segments are contained in the program file as overlay
entries. Refer to Figure 5-8, The module T.SEGMENT is a segmented COBOL module in an overlay
phase. T.NONSEG is a nonsegmented COBCL module in an overlay phase. Both overlay phases
and the COBOL segments are listed as overlay entries in the map program file listing.

5-10 2270521-9701

Link Edit

COBOL segmentation deals only with the segmentation of the Procedure Division (PSEGs) of a
COBOL program module. Two types of PSEGs are fixed and independent. The fixed portion is the
part of the object program that is logically treated as if it were always in memory. An independent
segment is the part of the object program that can overlay or be overlaid by another independent
segment. The TI COBOL Reference Manual contains a detailed description of COBOL

segmentation.

FILE MAP OF .DONO20.PROG

TODAY IS 12:57:26 WEDNESDAY, SEP 10, 1980.

TASKS: MAXIMUM POSSIBLE = 1
ID NAME LENGTH LOAD PRI S P MR D E O C OVLY P1/SAME P2/SAME INSTALLED
01 ovLY 1ASE 3020 b R 05 01/Y 9/10/80
PROCEDURES: MAXIMUM POSSIBLE = 1
1D NAME LENGTH LOAD MDEWC INSTALLED
01 RTCOBOL 3018 (000 9/10/80
OVERLAYS: MAXIMUM POSSIBLE = 5
1D NAME LENGTH LOAD MAP D OQVLY INSTALLED
01 SEGMNT 0200 533C 9/10/80
02 NONSEG 0442 533C 01 9/10/80
03 coBovy 00pA 5530 02 9/10/80
04 cOBOVY 00DA 5530 03 9/10/80
05 CcCOBOVY 00DA 5530 04 9/10/80

Figure 5-8. COBOL Segmentation Within Overlay Phase Modules

2270521.9701

511

Link Edit

5.5 CREATING LINKED OBJECT MODULES

Table 5-1 contains a list of valid link editor commands for COBOL linking object modules.

Table 5-1. Valid Link Edltor Commands With COBOL Object

Command Execute Execute
(Default Underscored) Partial Link (From Object File) (From Program File)

ADJUST Y Y Y
ALLOCATE NO NO Y
AUTO ! Y Y
COMMON NO NO NO
DATA NO NO NO
DUMMY Y NO Y
END Y Y Y
ERROR/NO ERROR Y Y Y
FORMAT ASCII Y Y NO
FORMAT COMPRESSED Y Y NO
FORMAT IMAGE NO NO Y
FORMAT IMAGE, REPLACE NO NO Y
GLOBAL/ALL GLOBAL/

NOT GLOBAL Y NO NO
INCLUDE Y z s
LIBRARY Y Y Y
LOAD/NO LOAD NO NO Y
MAP/NO MAP Y Y Y
NOAUTO Y Y Y
NOSYMT Y Y Y
PAGE/NO PAGE Y Y Y
PARTIAL Y NO NO
PHASE 0 Y Y Y
PHASE 1,2,...n NO NO Y
PROGEDURE NO NO Y
PROGRAM NO NO NO
SEARCH Y Y Y
SHARE NO NO NO
SYMT Y Y NO
TASK Y Y Y
Notes:

' Fora PARTIAL link, the default is NO AUTO and these commands should be omitted.
* Maln program must be included first.

? COBOL run-time procedure, task, and main program designator modules must be Included as part of the
link.

512 2270521-9701

Link Edit

Overlay phases are not allowed with linked object modules.

A linked object module must be produced in one of the following distinct formats:
¢ Tagged
. Compressed

Tagged object modules consist of ASCII characters with ASCII tags. Compressed object modules
also have tags, but the numeric characters are changed to binary representations.

Compared to the normal tagged object, the compressed object saves approximately 47 percent of
disk space.

The following example of a link control file shows how to generate a tagged object module:

TASK CBLTSK1
INCLUDE EX.MAINPRG1
INCLUDE EX.SUBPRGM
END

The following example of a link control file shows how to generate a compressed object module:

FORMAT COMPRESSED
TASK CBLTSK1
INCLUDE EX.MAINPRG1
INCLUDE EX.SUBPRGM
END

Note that the only difference between the two sets of link control commands is the FORMAT
command. The default format of the linked output is tagged (ASCII). The FORMAT command is not
required for tagged format. In both cases, the link edltor resoives external addresses or refer-
ences. Object modules or linked object modules are executed by using the XCP or XCPF com-
mands. Section 6 contains information for executing an object module or a linked object module.

5.6 CREATING PROGRAM IMAGES

For object modules produced by the link editor and installed on program files, the link editor must
link the program modules to the run-time interpreter module. Object moduies are installed and
stored on program files in memory image form. The link edltor may install the memory image
object directly on a program file. When the necessary program file does not exist, it is automati-
cally created. The link edlitor creates a program file with only enough room for the task and proce-
dure segments and overlays defined for the program. If a program file is created by the Create
Program File (CFPRO) command, the operating system allows a maximum of 255 task segments,
265 procedure segments, and 255 overlays.

Program images are executed by using the XCT or XCTF commands. Section 6 contains infor-
mation for executing object modules produced by the link editor and installed on program files.

22705219701 5.13

Link Edit

5.6.1 COBOL RunTime
COBOL run time consists of the following prelinked object modules:

e .S$SYSLIB.RCBTSK — This module contains the task entry vector plus the data area
portion of COBOL run time needed by the reentrant module RCBPRC. It must be
included as the first module in the task segment of the task. It is not reentrant.

. .S$SYSLIB.RCBTSKD — This module includes everything contained in
.S$SYSLIB.RCBTSK and the COBOL debugger module needed when performing inter-
active debugging of COBOL modules.

. .S$SYSLIB.RCBPRC — This is the reentrant module that contains the COBOL run-time
interpreter and can be included in a procedure segment of atask when desired.

s S$SYSLIB.RCBNOIO — This module is similar to .S$SYSLIB.RCBPRGC with the excep-
tion that any modules comprising the run-time interpreter relating to YO operations are
omitted.

* .S5$SYSLIB.RCBMPD — This module must be stored during Link Edit immediately pre-
ceding the COBOL object module intended to receive control at execution time. It then
designates to the run time where the object module begins. Since It is reentrant, it can
be used in either task or procedure segments.

The run-time entry module {.S$SYSLIB.RCBTSK), one of the two reentrant modules
(.S$SYSLIB.RCBPRC or .S$SYSLIB.RCBNOIO), and the main program designator module
(.S$SYSLIB.RCBMPD) can be specifically included in the appropriate places in the link control file.
The reentrant module .S$SYSLIB.RCBNOIO cannot be linked with the run-time entry module
.S$SYSLIB.RCBTSKD. The reentrant module .S$SYSLIB.RCBPRC (or .S$SYSLIB.RCBNOIO) can be
included anywhere in the link control file except as the first module in the task segment (phase
zero). If .5$SYSLIB.RCBPRC Is used, it is suggested that it be made P1, so that the shared proce-
dure segment on the system program file can be used. If .S$SYSLIB.RCBPRC is anywhere other
than P1, a separate copy is generated in the user program file and in memory when the program is
executed. When the first program module to receive control Is a COBOL program module, the run-
time entry module (.S$SYSLIB.RCBTSK or .S$SYSLIB.RCBTSKD) must be the first module
included in the task {(phase zero) since it contains the task entry vector. The main program desligna-
tor (.S$SYSLIB.RCBMPD) module must be included just prior to the COBOL program module that
recelves control. The following paragraphs demonstrate various techniques for linking these
modules with user modules to bulld tasks.

5.6.2 Linking a Single Procedure Segment With a Single Task Segment

The COBOL reentrant run-time interpreter module is installed by the COBOL installation on the
system program file as the reentrant procedure segment RCOBOL. This procedure segment is
identical to .S$SYSLIB.RCBPRC and can be shared by all user tasks that have been linked and
installed on user-defined program files. Using this procedure segment eliminates the need for a
copy of .S$SYSLIB.RCBPRC on each user-defined program file, thus saving disk storage. If you
have two user-defined program flles and .S$SYSLIB.RCBPRC is Installed on each, executing one
task from each program flle loads two copies of .S$SYSLIB.RCBPRC into memory. If the procedure
segment on the system program flle is used, only one copy of the reentrant procedure segment is
in memory during the execution of the tasks, thus saving memory space and minimizing swapping.

514 2270521-9701

Link Edit

Figure 5-8 shows a simple link edit using the system program file procedure segment RCOBOL.

The presence of the DUMMY command in the link control file prevents the procedure segment
from being replaced in the program file.

This procedure segment (RCOBOL) on the system program file must be used only in the link proce-
dure segment one (P1).

The procedure segment two (P2) and the task segments (T) may be structured using any of the
techniques mentioned in paragraphs 5.6.3 through 5.6.5. All examples use the shared procedure
segment RCOBOL. The origin addresses and fengths in the following figures do not necessarily
retflect the actual origin and lengths of the TI COBOL run time.

To use RCOBOL on the system program file, the DUMMY command musl always be specified,
even on the first link edit to a new program file. The procedure segment RCOBOL must not already
exist on the user program file. The reentrant procedure segment on the system program file is
identical to .S$SYSLIB.RCBPRC.

5.6.3 Linking a Single Procedure Segment With Multiple Task Segments

A single procedure segment may be shared by multiple tasks. The task segments must be linked
and instailed on the same program file. They will then be attached to this shared procedure seg-
ment. Figure 5-10 presents the structure shown in Figure 5-9 with an additlonal task segment
attached to the procedure segment. A link control file is shown on the right side of Figure 5-9.
When sharing a single procedure segment, all link control files must be identical within the proce-
dure segment. If any change is required in the procedure segment, all tasks on the program file
must be linked again.

5.6.4 Linking Two Procedure Segments With a Single Task Segment

A task segment may be attached to multiple procedure segments. Figure 5-11 shows the structure
of Figure 5-9 with an additional procedure segment added. Note that the DSEG or $DATA (nonreen-
trant object module code in the form of data) from the procedure segment is relocated to the task
segment immediately following the task PSEG allocations. All data referenced in procedure seg-
ments P1 and P2 must be referenced using indirect or indexed addressing. No direct references
can be made to the DSEG. Although the COBOL compiler segregates executable code from data
items and the link editor relocates DSEGs by moving them to the task segment, the PSEGs (reen-
trant object module code in the form of instructions) still reference data items with direct relocata-
ble addresses. Reentrant execution is permitted by locating the DSEG at the same absolute
location in each task segment. Assembly language object modules can also be made reentrant
through the use of PSEG and DSEG assembler directives.

2270521-9701 5-15

Link Edit

COMMAND LIST

FORMAT IMAGE, REPLACE
PROC RCOBOL

DUMMY

INCLUDE .S$SYSLIB. RCBPRC
TASK CBLTSKI

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE ,S$SYSLIB,RCBMPD
INCLUDE EX.MAINPRGI
INCLUDE EX.SUBPRGM

END

PROCEDURE 1, RCOBOL ORIGIN = 0000

> LINK CONTROL FILE

MODULE NO ORIGIN! LENGTH?Z

CRTIM 1 0000 3DF4 —— " RCBPRC (PSEG) P
RCBTSK (PSEG)

PHASE 0, CBLTSK! ORIGIN=3E00 #| _

MODULE NO ORIGIN' LENGTH? RCBMPD (PSEG)

———————— .

CXCBL 2 3EQO0 ocD4 MAINPRG1 (PSEG)

$DATA 2 4C32 04EC

CsMAIN 3 4AD4 go10 N\ o — — — — — —]

MAINPRGI 4 AAE4 00AC SUBPRGM (PSEG) T

$DATA 4 S511E 010E]

SUBPRG 5 AB90 00A2

$DATA 5 522C 00EA RCBTSK (DSEG)

NOTES: \ MAINPRG1 (DSEG)

‘1., ORIGIN ADDRESSES MAY DIFFER

2, LENGTHS MAYDIFFER = NI/F]7]F ——7—7——]
SUBPRGM (DSEG)

2277270

Figure 5-9. Linking a Single Procedure Segment With a Single Task Segment

516

22705219701

Link Edit

sjuawbag yse] aidniny yHM Juawbhag ainpaoold 91buig e Bunjuln -0l-g ainbig

FA-T44 S v.ivas
Ivar S 2ddans
2t1ls v vYivas
ravy 4 TOUINIVIA
Yavr £ NIYINED
050V Z vYivas
003IE Z 1892X2

HZ:.U_W_O "ON I NAon

S L8 '0 ISYHA

0000 1 WILHD

NIDl™O ON FTNAOW

009 1 AYNAITO0oNd

anNz
WOBLENS ‘X3 SANIONI
ZDULNIVIN " X2 IANIONL
ddWEDH " aITSASsSS " 3aNTON]|
HELEDH "AITISASSS " IOMIONI
ZMSLI8D MSVYL

2HdE2H FITISASSS T IUNIDNI
AWW N

10302 20¥d

IOV 143N ‘IOVINI LYWNEOS

LSITT ONYIWWOD

Y

i

(23sa) woudans

(D3Sd) MsL8DH

(93sa) WoAJHENS

(935Q) 1DYUdNIVIN

(93sd) IDEdNIVIN

(9asd) MMsS1aDYH

tLgLLee

HIA410 A¥YIW SISSITUQAY NIDINO)

“3LON

/ 0228 g vivas
oegy g ouddans

31 v vivas

rIve v 19HdNIVIA

ravre £ NIVING D

ZEOY z vivas

003¢ z i {=Fo} %o

NISINO ON T1NAoW

I

IMSLMED ‘0O ISVYHd

WILHED

ITNAON

Id (D3sd) DydgDH

\

S3TId TOELNOD MNIT

08054 1 INNAIDONEL

0000 I
\ZHU_EO ON
-

anz
WONdENS " X3 3aMIINI
LOMANIVIA* X3 FAMTONI
OdWEDY 'BITSASSS - IAMTONI
MSLED0Y ‘AINSASSS " IAMIONI
< IMSLTED MSVL
DHLEDN "BITSASSS * IAMOINI
AWK NQ

108093 D0Nd

TOVdIN ‘TOVINI LVINNOS

LSITT ANVYINWOD

517

2270521-9701

Link Edit

COMMAND LIST

FORMAT IMAGE, REPLACE
PROC RCOBOL

DUMMY

INCLUDE ,S$SYSLIB.RCBPRC
PROC SHRSUB

INCLUDE EX.SUBPRGM
TASK CBLTSK1

INCLUDE ,S$SYSLIB,RCBTSK
INCLUDE ,S$SYSLIB, RCBEMPD
INCLUDE EX., MAINPRG1

END

? LINK CONTROL FILE

-~

PROCEDURE 1, RCOBOL. ORIGIN = 0000

MODULE NO ORIGIN LENGTH
CRTIM 1 0000 3IDE4 \
RCBPRC (PSEG) P1
PROCEDURE 2, SHRSUB ORIGIN = 3E00
MODULE NO oricIN! LENGTH?Z BPRGM (FSEG) b2
su
SUBPRG 2 3E00 ooaz — ¥
$DATA 2 4C50 00EA
RCBTSK (PSEG)
PHASE 0, CBLTSKI ORIGIN RCBMPD (PSEG)
MODULE NO ORIGIN] LENGTH2 T T
MAINPRG! (PSEG) T,
cXCBL 3 3ECO 0oCD4]
D 3 4D3
$DATA A 04EC SUBPRGM (DSEG)
CHsMAIN 4 4B94 0010
MAINPRGI 5 4BAA4 00AC —— — — — — — —
$DATA 5 5226 010E RCBTSK (DSEG)
NOTES: e — o —— —]
1. ORIGIN ADDRESSES MAY F
PIFFER MAINPRG1 (DSEG)
2, LENGTHS MAY DIFFER

2277272

Figure 5-11.

5-18

Linking Two Procedure Segments With a Single Task Segment

2270521-9701

Link Edit

5.6.5 Linking Two Pracedure Segments With Multiple Task Segments

Multiple task segments may be attached to multiple procedure segments. Figure 5-12 shows the
structure of Figure 5-11 with an additional task segment attached to the procedure segments.
Note the allocation addresses shown in Figure 5-12. The origin address for the $DATA (DSEG)
associated with SUBPRGM is 4C50 for task T1 and 4C6E for task T2. Since the program SUBPRGM
always expects its data to be in the same location, execution of CBLTSK2 will not execule
correctly.

This situation is handled by using the ALLOCATE command. The ALLOCATE command allows you
to share COBOL program object modules as procedure segmenis. The ALLOCATE command is
always used in the task segment of the link control file. Place the ALLOCATE command after a
TASK or PHASE 0 command and before a PHASE 1 or LOAD command, If any are used. The
ALLOCATE command should be issued immediately following the INCLUDE.S§SYSLIB.RCBTSK
stalement and must be placed in the same location in the link control file for all task segments that
are sharing COBOL program object modules in P2. The ALLOCATE command causes all DSEGs
associated with previously allocated executable PSEGs to be allocated immediately. Space is
immediately allocated to all DSEGs associated with PSEGs in either P1 or P2 when the ALLOCATE
command occurs in the link control file. Figure 5-13 shows the effects of using the ALLOCATE
command when linking two procedure segments with multiple task segments. Note that the crigin
address for the DSEG for SUBPRGM is 4B24 for both tasks.

If either the link control file statements or a procedure segment in this structure change before the
ALLOCATE command is issued, all task segments on the affected program file must be relinked.

2270521-9701 519

Link Edit

sjuswbag yse] o|diny Y siuswbag ainpasold om] Bunjui

rres g vivas
rvvar € ZO¥INIYN
vegy v NIVINS D
gsay £ Y.LvQas
023¢ € q890oXD

¢ NIDIEO ON 3TNa0oK

ZHSLIED ‘0 ISVYHJ

3907 Z
0c3¢e [4

hZ__mv_w_O ON

Yilvas
Qudans

I NAON

8NSYEHS ‘Z I¥NA3D0dd

0000 I WILHD

NIDIAO ON IATNAOKW

TIOE028 ' | I¥NAID0Nd

7

/

/4

R

(93SQ) TOMANIVIN

(938A) WoNdans

(D3Sd) ZOHANIVW

(925d) HSlaon

(D3ASG) IDHEINIVIN

(D3Sd) IDHANIVIN

(D3ISd) MSLEDH

/[

aN3
ZOHANIYIN ' X3 3QOTDNI

adWEDH " aITTSASSS ™ 3ANTONI
HSLEDYH GITISASSS ™ FANTONI

THSLTI8D MSYL
W2HdaNS " X3 JANTTINI
AWIKWNQA

aNsSdHS 20ud

DULEDY ' AIMSASES T IANTIDNI

AWIWNG
7108024 20dd

IOV IdEY "IOYWI LYWHOS

1S171 ONYIWINOD

(935d) WOuUdENS

Id (93s5d) 2ddEdy

SIE12 TOHULNOD HNITT

"Z1-G aInbig

€L2LL22

Y3410 AVIW STSSIHOAV NIDIHO ~1L
SEALON

gzes vilvas

rvar LDUJINIVIN

rear NIVIN$D

vear v.ivas

0D3E 1a0X2

oM g W

_.Z_mu_mo ON T Nnaon

IMSLT8D "0 ISVHd

e[3=1 [vivas
003¢€ [Sudans
FTNAoON

_.Z_U_mO ON

SNSYHS ‘2 3UNA3ID0Ud

0000 1 WILED

NIDIYO ON 31 NGO

“qo802y ‘1 I¥NAQIDONd

ana

IDUANIVIN “XT IAIMIONI
OdWEDY "BINSASSS * 3AMIONI
MS1E58 ‘SINSASSS ® IAMIDNI
IMSLIED HSVYL

WONJLENS "X3 IAMIONI

< gNSHHS Doud
DudEDH ‘GINSAS$S " IAMI2NI
AWWNG

“10802d Doud

IOVIdaAN "IDOVNI LVINEOZ

LS1T ONYIWWOD

22705219701

5-20

Link Edit

(3Lv2071V) stuawbag yse] ejdiniy ynm siuowbos ainpasold om| bunjury -gp-g ainbiy

rres S v.ilvds
VLIS § TDUANIYW
vI1s 4 NIVIHsSD
NID1HO ON 1 NAoOKH

L
(FLYDO0TIY LS0d)
THSLIIED ‘0 ISVHL

JLor [Y.1vas
0D23¢ £ 1g923X2

NISIHO ON

L TINAOW

ZHSLTED 'O ISVYHA

reay Z vivas
Q03¢E Z oHdaNs

NIDINO ON

. I NAOW

8MNSHHS 'Z IHNa3ID0Nd

0000 I WILED

NIDIHO ON I NAOW
TOI0DY T 1 AWNCID0Ud

e

S

anNz

ZoHdNIYIN' X3 3ANTON]
ddWgod '8ITSASSS " ZAIMIDNI
— ILY20TTYV
MSLE2d " aIMsSASsS ™ 3AMTINI
TASLIED MSVYL

WOXdENS X3 3anT12NI

AW NAQ

BRASEHS 20ud

QLAY HINISASSS ' IANMIDINI
AWWNA

109024 S0ud

ADV1d3Y ‘IDOVINI LVIANOA

LS17T ONYIANGD

2L

(935a) ZOUINIVIN

(93Sd) ZOAJNIVIN

(93s5d) OdWedy

(23s0) wsLEdy

(9350} WoUdaNns

(935d) Msledy

L

p——— — —— — —] (93SQ) 19¥JINIVI

(DFSd) 1OHJINIYN

] —

(938A) WOHLANS

(93sd} Ms.LEDH

\

N\

\

Zd (935d) WoHdans

1d (93s5d) odudanu

ST TCULNOD HNIT

\

/

VLTLLEZ

Y¥ISLIa AYW SISSTUAAY NIDIYO I
I3LON

922s s vivas
vils S 19HANIVW
vols v NIYHSD

NIDTHO ON I1NAONW

(ALVDOOTIY LS0d)
INSLTIED ‘0 3SYHd

ALOor E vivas

(==)4 4 829X0
_Z_O_EO oN ITTNACKN

IMSL9D ‘0 ASVYHd

reay 4 vivas
o03g 4 oudans
NIDIHO ON FTINAowW

I
gNSEHS 'Z TYNAID0ud
Q000 1 WILYED

NIDIHO ON Elpigielely]
70802y 1 2UNAII0Ud

aN3a

IDHANIVIN X3 3AMIINI
AdWadd " aITSASSS " 3AmMIoNI
— ALY20TTIY
MS1E2d ' gITISASSS T 3ANTDNI
IMSLI8D MSYL

WDULdENS " X3 3ANTDNI
EnNSHHS DOYUd
SHJEOH'AITISASSS T JAMIDNI
AWWNAa

1049008 20ud

HOoV1d3Y "IADVIIE LYNEOA

LS1TT ONYININOD

5-21

2270521-9701

Link Edit

Object modules that have been separated into PSEGs and DSEGs can be shared successfully if
the following conditions are met:

. All modifiable data is contained in the DSEGs. Object modules generated by the COBOL
compiler are produced with all modifiable datain the DSEGs.

. If the first procedure segment uses this PSEG/DSEG structure, the second procedure (if
used) must be the same length for all tasks that share the first procedure.

e Tasks that share a second procedure must also share the same first procedure.

When using the ALLOCATE command, you can construct a task whose first procedure segment is
the reentrant module of the COBOL run-time interpreter {.5$SYSLIB.RCBPAC), and whose second
procedure segment is a set of COBOL and/or assembly language program modules. The DSEGs
for the routines can be loaded immediately after the run-time interpreter entry module
(.5$SYSLIB.RCBTSK) by using the ALLOCATE command. Even though the task segments asso-
ciated with the two different programs are different, the DSEGs are located in identical locations,
allowing direct references in the second procedure segment to be completed successfully.

5.6.6 Overlay Structures
When two or more subroutines are not required to reside in memory simultanecusly, an overlay
structure can be used to reduce the task's memory requirements. Programs that do not use over-
lays are loaded into memory and remain In memory until execution completes. Programs that use
overiays conserve memory space since each overlay resides in memory only when it is called. The
total memory space requlired by the program is that which is required to hold the root portion of the
task segment and the longest overlay path. Overlays are defined by the use of the link control file.
. Figure 5-14 shows a link control file and tree structure depicting two phase one and two phase two
overlays. The location of phase one is after phase zero. The CBLOV10 phase one overlay contalns
two phase two overlays. The LOAD command allocates the overlay loader module in the appro-
priate location. (The command LIBRARY .S$SYSLIB must be included in the link control file when
using the LOAD command.)

5-22 2270521-9701

COMMAND LIST
FORMAT IMAGE , REPLACE
LIBRARY, S$SYSLIB
LIBRARY EX
PROCEDURE CBLPROCI
INCLUDE, (RCBPRC)
INCLUDE (RCBMPD)
INCLUDE (CBLMPG)
INCLUDE (CBLSUB1)
INCLUDE EX,ASMPG]
PROCEDURE CBLPROC2
INCLUDE (CBLSUB2)
INCLUDE EX,ASMPG2
PHASE 0, CBLTASK
INCLUDE (RCBTSK)
ALLOCATE
INCLUDE EX, ASMPG3
INCLUDE (CRSuUB3)
LOAD
PHASE 1,CBLOVI1O
INCLUDE (CBSUB4)
INCLUDE EX, ASMPG4
PHASE 2 ,CBLOVII
INCLUDE {CBSUBS)
PHASE 2 ,CBLOVI2
INCLUDE EX, ASMPGS

LINK CONTROL FILE

\, PROCEDURE |

INCLUDE (CBSUBE) CBLPROCH
PHASE 1,CBLOV20 J
INCLUDE (CBSUB7) T N
INCLUDE (CBSUBBS)
L PROCEDURE 2
INCLUDE (CBSUB9) CBLPROC2
END
-~ I
-
L PHASE O
CBLTASK
P
PHASE 1
CBLOV10
PHASE 2 PHASE 2
CBLOVI1 1 CBLOVI12Z2
2279009

Link Edit

PHASE 1
CBLOV20

Figure 5-14. An Overlay Structure With the Accompanying Link Control File

2270521-9701

5.23

Link Edit

The DSEGs for both the CBLPROC1 (P1) and CBLPROG2 (P2) procedure segments float to the end
of phase zero (CBLTASK) following the PSEGs of the routines in phase zero. The PSEGs remain in
their respective procedure segments. The DSEGs of all phases float to the end of their respective
phase immediately following ail the PSEGs of the modules in the phases.

It must be noted that if file /O is performed in an overlay module, the files must be opened on each
entry and closed before exiting to release any assigned LUNO. The overlay phase is loaded in its
initial state on each entry. However, if consecutive calls are made to the same overlay phase
module, the module already resides in memory and is not reinitialized,

5.6.7 Sharing Main Program Module

The main program designator moduie (.S$SYSLIB.RCBMPD) may be shared with multiple users or
terminals. Figure 5-15 shows inclusion of the main program designator module and the user's
main COBOL program object module in the P2. The task may be executed from multiple terminais
simultaneously, with each task's memory requirements significantly reduced because the main
program module is shared among all tasks.

5.6.8 Linking a Single Procedure One Segment and Multiple Procedure Two Segments

Figure 5-16 shows an example of a P1 with different P2s. Applicable to the discussions for this
example, which has multiple procedure segments, are the Section 5 paragraphs Linking Two Pro-
cedure Segments With a Single Task Segment and Linking Two Procedure Segments With Multi-
ple Task Segments.

COMMAND LIST

FORMAT IMAGE , REPLAGE RCBPRC PI
PROC RCOBOL,

DUMMY RCBMPD

INCLUDE .S$SYSLIB.RCBPRC LINK MAINPRG} P2
PROC PTWO > CONTROL SUBPRGM

INCLUDE ,S$SYSLIB.RCBMPD FILE

INCLUDE EX. MAINPRGI RCBTSK TASK

INCLUDE EX, SUBPRGM
TASK CABLTSKI
INCLUDE .S$SYSLIB,RCBTSK

END)

2277276

Figure 5-15. Sharing the Main Program Module With P2

5.24 2270521-9701

LINK |

COMMAND LIST

FORMAT IMAGE, REPLACE
PROC RCOBOL

DUMMY

INCLUDE .S$SYSLIB.RCBPRC
PROC PTWOI

INGLUDE EX,SUBPRGMI
TASK CBLTSKI

INCLUDE ,S$§SYSLIB.RCBTSK
ALLOCATE

INCLUDE .5 $5Y5LIB, RCEMPD
INCLUDE EX.MAINPRGI

END

LINK 3

COMMAND LIST

FORMAT IMAGE, REPLACE
PROC RCOBOL

DUMMY

INCLUDE .S$SYSLIB.RCBPRC
PROC PTWO2

INCLUDE EX.SUBPRGM2
TASK CBLTSK3

INCLUDE .S$SYSLIB,RCBTSK
ALLOCATE

INCLUDE .S$SYSLIB.RCBMPD
INCLUDE EX.MAINPRG3

END

LINK

> CONTROL

FILES

Pi

<

Link Edit

LINK 2

COMMAND LIST

FORMAT IMAGE , REPLACE
PROC RCOBOL

DUMMY

INCLUDE ,5$SYSLIB,RCBPRC
PROC PTWOI

OUMMY

INCLUDE EX.SUBPRGMI
TASK CBLTSK2

INCLUDE .S $SYSLIB.RCBTSK
ALLOCATE

INCLUDE ,S5SYSLIB.RCBMFPD
INCLUDE EX., MAINPRG2

END

LINK 4

COMMAND LIST

FORMAT IMAGE , REPLACE
PROC RCOBCOL,

DUMMY

INCLUDE ,S3$%SYSLIB.RCBPRC
PROC PTWO2

DUMMY

INCLUDE EX.SUBPRGM2
TASK CBLTSK4

INCLUDE .S$SYSLIB.RCBTSK
ALLOCATE

INCLUDE .S$SYSLIB, RCBMPD
INCLUDE EX, MAINPRGA4

END

}T,

2277277

P2y

T2

P2,

}n

Figure 5.-16. Linking a P1 With Different P2s

22705219701

5-25

Link Edit

5.6.9 Linking a Single Procedure Segment With a Single Task

Figure 5-17 shows an example of a single procedure segment linked to a single task segment.
Both the procedure segment and the task segment are contained in the user's program file. To
include both segments in the user's program file, you can either:

. Specify procedure RCOBOL and omit the DUMMY command in the link control file, or
» Specify a procedure name other than RCOBOL in the link control file.

5.6.10 Installing Program Images From a Relative File

To install the task and procedure segments in a program file, the Install Procedure (IP), Install Task
(IT), and Install Overlay (I0) commands are used. A LUNO must be assigned to the relative file and
used in the IT, 10, and IP commands. The IP command must be executed before the IT command,
which must be executed before the 10 cornmand {if applicable), because the link editor outputs the
procedure and task segments to a relative file in the order in which they are processed. Relative
files are read sequentially by the IP and IT commands; therefore, assigning a LUNQ to arelative file
prevents the file from being repositioned to the beginning between commands. The following is an

example of a link control file linking a procedure segment and task segment, sending output to a
relative file.

PROCEDURE RCOBOL

INCLUDE .S$SYSLIB.RCBPRC
TASK CBLTSKI

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE EX.MAINPRG1
INCLUDE EX.SUBPRGM

END

NOTE

A procedure segment and task segment cannot be linked to create a
linked object file if any COBOL object modules contain segmenta-
tion. COBOL programs with segmentation must be installed auto-
matically by the Link Editor (through the use of the FORMAT IMAGE
statement).

5-26 2270521-9701

COMMAND LIST

FORMAT IMAGE, REPLACE
PROC RCOBOL

INCLUDE .S3%SYSLIB.RCBPRC
TASK CBLTSKI

INCLUDE .S3$SYSLIB,RCBTSK

INCLUDE EX.MAINPRGI
INCLUDE EX.SUBPRGM
END

INCLUDE .S4$SYSLIB.RCBMPD

\

PROCEDURE 1, RCOBOL ORIGIN = 0000

MODULE NO ORIGIN LENGTH?
iDF4 —— ¥

CRTIM 1 0000

PHASE 0, CBLTSK! ORIGIN = 3EO00

MODULE NO ORIGIN
CXCBL 2 3E00

$DATA 2 4C32

C$MAIN 3 AADA

MAINPRG! 4 AAE4
$DATA A 511E

SUBPRG 5 4B90

$DATA 5 522C

NOTES:

1. ORIGIN ADDRESSES MAY DIFFER
2. LENGTHS MAY DIFFER

2279008

Link Edit

> LINK CONTROL FILE

RCBPRC (PSEG)

Pi

2

LENGTH

0oCD4
04EC

0010
00AC

O10E
00A2
O0EA

N\

RCBTSK (PSEG)

MAINPRG1 (PSEG)

MAINPRG! (DSEG)

e —— —— — — — — —

SUBPRGM (DSEG)

Figure 5-17. Linking a Single Procedure Segment With a Single Task

2270521-9701

5-27

Link Edit

5.7 LINKING LIBRARIES

The link editor supporls two types of library file structures: random libraries and sequential
libraries. A random library is a directory whose files are the object modules included to resolve
external references. Figure 5-18 shows the structure of a random library.

In Figure 5-18, S$SYSLIB, S$PROC, and C$SUBS are directories, with RCBPRC, RCBTSK,
RCBMPD, C$TMPF, C$FCFD, C$SCRN, XCCF, and XCPF being data files. Each directory is a node,
with the highest level (VCATALOG) being the root node. VCATALOG is assigned a symbolic name
when a disk volume is installed or initialized. VCATALOG contains pointers for each directory
(node} or file in the level immediately below the VCATALOG. In Figure 5-18, pointers are contained
in the VCATALOG tor directories S$SYSLIB, S§PROC, and C$SUB.

VCATALOG

O
SO 6

Figure 5-18. Random Library Structure

s $ sYsSLIB s $ PROC

RCBPRC

2277279

5-28 2270521-9701

—,

Link Edit

Modules in a random library can have more than one entry point. However, the secondary entry
points are not contained in the directory; consequently, they must be defined to the system as
aliases if automatic symbol resolution is being used. An alias is an alternate name for a file path-
name component. If the module is specifically included (by use of the INCLUDE command), an
alias definition is not required.

FORMAT IMAGE, REPLACE
LIBRARY .S$SYSLIB.C$SUBS
LIBRARY .SCI990.SSOBJECT
PROCEDURE RCOBOL

DUMMY

INCLUDE .S$S5YSLIB,RCBPRC
TASK CBLTSK

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE ,S$SYSLIB.RCBMPD
INCLUDE <COBOL object module>
END

In the link controf tile, the INCLUDE command defines modules or files of modules that are to be
included in a phase. The LIBRARY command specifies the random or sequential libraries that will
be searched to satisfy unresolved external references in the modules {o be linked. The link editor
automalically processes all control stream commands and then resolves external references in
the modules from the libraries specified in the LIBRARY commands. It is possible to use the
SEARCH command in link control files instead of the LIBRARY commands. The SEARCH com-
mand directs the link editor to perform a search of a library at a particular point in the control
stream. However, it is recommended that the LIBRARY command be used when external refer-
ences need to be resolved. Refer to the Link Editor Reference Manual for a detailed explanation of
the INCLUDE, LIBRARY, and SEARCH commands and an example of entry points.

A sequential library is a sequential file containing one or more object modules generated by a par-
tial link edit. The outputs of the partial link edits are concatenated into a sequential file by use of
the Copy Concatenate (CC) or the Append File (AF) commands. The Link Editor Reference Manual
includes detailed information about sequential libraries and partial link edits.

5.8 LINKING LIMITATIONS

Total memory requirements of a program (task) must be less than the 65,536-byte task address
space. Any physical buffers used for blocked I/O do not require space in the user's program
because they are allocated as a part of and are maintained by the operating system.

The maximum number of overlays, procedure segments, and task segments permitted in a single
program file is 255, If the link editor creates the program file, only enough room is allocated for the
task and procedure segments or overlays as needed in the program. The user may create a pro-

gram file with the desired limitations using the Create Program File {CFPRO} command.

Each phase overlay in the link control file requires one entry in the program file.

2270521-9701 5-29/5-30

6

Execution

6.1 GENERAL

COBOL provides for execution of object modules as well as program images. Object module exe-
cution involves the execution of compiler-produced object modules or linked object modules.
Program image execution involves the execution of a task that has been installed in a program file.

6.1.1 Useof aSynonyminthe COBOL Select Clause

If a synonym is used in a COBOL SELECT statement to define the storage medium {a pathname or
device name), the synonym must be assigned prior to execution of the program. Only single level
synonym evaluation is performed; that is, the value of a synonym cannot contain another syn-
onym. For example, a synonym named KEYFILE with a value of VOL1.PAYROLL.P00044 is accept-
able. A synonym named KEYFILE with a value of A.P00044 (where A is a synonym for
VOL1.PAYROLL) is nol acceptable. To assign a synonym, use the Assign Synonym {AS) SCl com-
mand. The AS command defines a string of one or more characters to substitute for another string
of characters.

6.2 QBJECT MODULES EXECUTION

The task loader module, which is included in the reentrant run-time interpreter module, loads the
object file into memory. The loader module determines the amount of memory required to contain
the interpretive object code, expands the task memory space by the computed amount, and then

reads the object file and stores the object code into memory.

Generally, execution of an object module is not used for production programs for the following
reasons:

. COBOL program moduies that do not require linking are fairly simple since overlay
phases and subroutines are not allowed.

. An increased amount of disk and memory space is required to execute an object
module.

. The time required 1o load the object module into memory is increased.
Execution of an object module is permissible under the following conditions:

. The object module must have been produced by the COBOL compiler.

. The object module must be self-contained. Subroutines are not permitted.

. The object module may contain program segmentation.

22705219701 61

Execution

Execution of a linked object module is permissible under the following conditions:
. The object module must have been produced by the COBOL compiler.
. The object module may contain program segmentation.

Debugging is permitted in the foreground mode only. To execute a COBOL object module or linked
object moduie, enter the XCPF command for foreground execution or the XCP command for back-
ground execution. The XCPF command allows the program to use the terminal for I/O operations
during execution. The XCP command allows the terminal to be used for other foreground com-
mands during the background execution of the COBOL program.

6.2.1 Execute COBOL Program in Foreground (XCPF)
To execute an object module or a linked object module in the foreground, use the XCPF command.
The following prompts appear with the indicated initial values:

EXECUTE COBOL PROGRAM FOREGROUND <VERSION: L.R.V YYDDD>
OBJECT ACCESS NAME: pathnamed
DEBUG MODE: {YES/NO} (NO)
MESSAGE ACCESS NAME: [pathnamed]
SWITCHES: [(integer)] (00000000}
FUNCTION KEYS: {YES/NO} {NO)

OBJECT ACCESS NAME — Enter the pathname, synonym, or logical name of the file containing
the object module.

DEBUG MODE — Enter YES if the program is to execute in the COBOL debug mode. Debugging is
permitted in the foreground mode only. The initial value is NO. Section 7 defines debug
operalions.

MESSAGE ACCESS NAME — No response lo this prompt indicates that COBOL system error
messages are to be listed to the terminal local file {TLF) of the initiating terminal. The TLF is the
defaull output file to which SCI sends the results of an operation if no other file or device is speci-
fied as the destination. Entering a pathname or synonym in response to the prompt indicates
COBOL system error messages are printed In a user file or on adevice in lieu of the TLF.

If a file name is specified in response to the MESSAGE ACCESS NAME, control returns to the
main SCI menu upon completion of the execution of the COBOL program.

However, if two tasks use the same file name for MESSAGE ACCESS NAME, the first task exe-
cuted opens the file exclusively. The second task abnormally terminates with a TLF error. Refer to
Appendix G for a listing of run-time error messages.

SWITCHES — Enter the setting of the software switches to be used by the program. The values
should be 0 or 1 for each of the eight switches. Setting a value of 1 gives the swilch a status of ON;
0 sets the status o OFF. Example switches are 10010011. The first, fourth, seventh, and eighth
switches are ON, while the remaining are OFF. The initial value is 00000000, Refer to Figure 6-1 for
an example of the use of software switches in the SPECIAL-NAMES paragraph of a COBOL source
program module,

6-2 2270521-9701

Execution

LINE DEBUG PG/LN S

25

26 SPECIAL-NAMES.

27 SWITCH-1.

28 ON STATUS 1S SW-1-ON,
29 OFF STATUS IS SW-1-0FF;
30 SWITCH-5.

3 OFF STATUS IS SW-5-0FF,
32 ON STATUS IS SW-5-0N;
33 SWITCH-7.

34 ON IS SW-7-0N;

35 SWITCH-8.

36 OFF IS SW-8-0FF;

Figure 6-1. SPECIAL-NAMES Paragraph Example

FUNCTION KEYS — Enter YES to enable a function key to terminate input and allow function key
codes to be returned through the ON EXCEPTION clause (if specified). This prompt pertains to all
VDTs to which ACCEPT operations are performed. The initial value is NO {function keys are
ignored).

The input text for an ACCEPT operalion will be right-justified if all the following conditions are
true:

¢ The ACCEPT operalion is performed on a right-justified field.
) The initial value of the function keys is NO,

The input text for an ACCEPT operation will also be right-justified if all of the following conditions
are true:

e The ACCEPT operation is performed on aright-justified field.
. The initial value of the function keys is YES.
. An non-blank prompt value is given.

The input text for an ACCEPT operation will be right-justified with zero-fill if all of the following
conditions are true:

* The ACCEPT operation is performed on a numeric field.

. The initial value of the function keys is NO.

2270521-9701 6-3

Execution

The input text for an ACCEPT operation will also be right-justified with zero-fill if all of the
following conditions are true:

. The ACCEPT operation is performed on a numeric field.
. The initial value of the funclion keys is YES.
. A prompt is given with no operand.

The input text for an ACCEPT operation will be left-justified with blank-fill if all of the following
conditions are true:

¢ The ACCEPT operation is performed on a numeric field.
¢ The initial value of the function keys is YES.
. No prompt is given.

6.2.2 Execute COBOL Program in Background (XCP)
Execution of an object module or a linked object module is performed in background with the XCP
command. The following prompts appear with the indicated initial values:

EXECUTE COBOL PROGRAM <VERSION: L.R.V YYDDD>
OBJECT ACCESS NAME: pathnamed
MESSAGE ACCESS NAME: [pathnameal
SWITCHES: [(integer)}] {00000000)
FUNCTION KEYS: {YES/NO)} {NO)

The parameters are the same as those described for the XCPF command except for the absence of
the DEBUG MODE prampt. Debugging is not allowed in background mode.
6.3 EXECUTION COMPLETION CODES AND RUN-TIME ERROR MESSAGES

Execution of a COBOL program through a command procedure causes a condition code to be
returned under the synonym $$CC. The possible values of $$CC are as follows:

Value Meaning
0000 Normal termination
8000 Abnormal termination

6:4 2270521-9701

Execution

Any code set by the user through a STOP literal statement is set in the two rightmost positions of
the condition code, as In the following examples:

Value Meaning

0020 Implies a normal completion with a user
code of >20. (An angle bracket preced-
ing a number indicates a hexadecimal
value.)

8030 Implies abnormal completion after the
user code is set at >30.

The synonym $$CC should be checked in batch streams immediately after program execution.
$$CC is used by other processors, and Its integrity is not guaranteed after completion of the batch
stream or the execution of another command.

Run-time error messages are provided for errors related to object code resulting from incorrect
source statements or for system errors. Appendix C contains a listing of these error messages.

6.4 PROGRAM IMAGE EXECUTION

All GOBOL programs Installed as program images (tasks) on program files must have been linked
to the COBOL run-lime interprater module by the link editor. The COBOL run-time inierpreter is
described in Section 5. At execution time, the operating system task loader loads the user task
segments and any associated procedure segments into the task memory space. The operating
system expands the task memory space as necessary. Mulliple tasks sharing the same procedure
sagment need only one copy of the procedure segment in memory. This applies whether the proce-
dure segment is on a system program file or in a user program file. When tasks from different pro-
gram files are executed concurrently, each Individual task segment and its associated procedure
segment are loaded Into memory at execution time,

6.4.1 Execute COBOL Task in Foreground (XCTF)
The XCTF command executes a COBOL task in foreground. The task must have been previously
installed on a program file. The following prompts appear with the indicated initial values:

EXECUTE COBOL TASK FOREGROUND <VERSION: L.R.V YYDDD>
PROGRAM FILE LUNO: integer
TASK ID OR NAME: integer

DEBUG MODE: {YES/NO} (NO)
MESSAGE ACCESS NAME: [(pathname)]
SWITCHES: [(integer)] (00000000)
FUNCTION KEYS: {YES/NO} (NO)

PROGRAM FILE LUNO — Enter the LUNO (global or statlon) assigned to the program file on which
the task is installed. The LUNO must have been assigned previously with the Assign LUNO (AL)
command or the Assign Global LUNO (AGL) command.

2270521-9701 6-5

Execution

The AL command assigns a task-local LUNO to a device or file accessible to the task for /0 oper-
ations. The AGL command assigns a LUNO to adevice or file that Is available to more than one job.
For the AL and AGL commands, if you do not specify a LUNQ, the system will assign one that is
available. If you specify a LUNO to which the device or file is currently assigned, an error is
returned.

TASK ID OR NAME — Enter the installed task ID or task name specified in the link control file.

DEBUG MODE — Enter YES if the task is to he executed in the COBOL debug mode. If a YES is
entered, the task must have been linked using the run-time task entry module with the COBOL
debugger {.S$SYSLIB.RCBTSKD); otherwise, an execution error is generated. The initial value is
NO. Debug operations are defined in Section 7,

MESSAGE ACCESS NAME — No response to this prompt indicates that COBOL system error
messages are to be printed to the terminal local file (TLF) of the initiating terminal. Entering a path-
name or synonym causes COBOL system error messages to be written to this user file instead of
the TLF, and control will return to the main SCI menu at completion of the COBOL program.

Users must note that if two tasks use the same file name for MESSAGE ACCESS NAME, the first

task executed opens the file exciusively. A subsequent task abnormally terminates with a mes-
sSage access error.

SWITCHES — Enter the setting of software switches to be used by the program. The value should
be 0 or 1 for each of the eight switches. Setting a value of one gives the switch a status of ON; 0
sets the status to OFF. Examplte switches are 10010011, The first, fourth, seventh, and eighth
switches are ON, while the remaining are OFF. The initial value is 00000000. Refer to Figure 6-1 for
an example of the use of software switches in the SPECIAL-NAMES paragraph of a COBOL source
module.

FUNCTION KEYS — Enter YES to enable a function key to terminate input. The function key code
wilt be returned through the ON EXCEPTION clause (if specified). This prompt pertains to all VDTs
to which ACCEPT operations are performed. The initial value is NO (function keys are ignored).

The input text for an ACCEPT operation wlll be right-justified if all the following conditions are
true;

» The ACCEPT operation is performed on a right-justified field.
* The initial value of the function keys is NO.

The input text for an ACCEPT operation will also be right-justified if all of the following conditions
are true:

* The ACCEPT operation is performed on aright-justified fleld.
* Theinitial value of the function keys is YES.

. An non-blank prompt value is given.

6-6 2270521.9701

Execution

The input text for an ACCEPT operation will be right-justified with zero fill if all of the following
conditions are true: ‘

* The ACCEPT operation is performed on a numeric fieid.
. The initial value of the function keys is NO.

The input text for an ACCEPT operation will also be right-justified with zero fill if all of the fol-
lowing conditions are true:

* The ACCEPT operation is performed on a numeric field.
. The initial value of the function keys is YES.
. A prompt is given with no operand.

The input text for an ACCEPT operation will be left-justified with blank fill if all of the following
conditions are true:

. The ACCEPT operation is performed on a numeric field.
* Theinitial value of the function keys is YES.
. No prompt is given.

6.4.2 Execute COBOL Task in Background (XCT)
The XCT command executes a COBOL lask in background mode, The task must have been pre-
viously installed on a program file. The following prompts appear with the indicated initial values:

EXECUTE COBOL TASK <VERSION: L.R.V YYDDD>
PROGRAM FILE LUNO: integer
TASK ID OR NAME: integer
MESSAGE ACCESS NAME: [(pathnameal
SWITCHES: ((integer)] €00000000)
FUNCTION KEYS: {YES/NO} (NO)

The responses to the XCT prompts are the same as those described for the XCTF command except
for the absence of the DEBUG MODE prompt. Debugging is nol allowed in background mode;
therefore, the task must have been linked using the run-time interpreter module without the
COBOL debugger {.S$SYSLIB.RCBTSK).

6.5 EXECUTION COMPLETION CODES AND RUN-TIME ERROR MESSAGES

The execution completion codes described previously for the XCPF and XCP commands are the
same as for the XCTF and XCT commands. Run-time error messages are described in Appendix C.

2270521-9701 6-7

Execution

6.6 PROGRAM TERMINATION MESSAGES

The COBOL run-time termination messages, STOP RUN AT . . . and END COBCL RUN are not dis-
played to the message file when a program terminates normally. This enhances performance
because Assign LUNQ, Open File, Write, and Close operalions to the COBOL message file are
avoided. If the messages are desired, they can be produced by changing parameter 6 in the .BID or
.QBID of the XCTF, XCT, XCP, and XCPF SC| commands. The parameter value should be changed
from N to Y to achieve this. That is, the statement

EXAMPLE:

PARMS = ("3aXCP0",&DEBUG MODE,BZMESSAGE ACCESS NAME,
"“&SWITCHES" ,&FUNCTION KEYS,"N",,)

should be changed to

PARMS = ("29%XCP0",&DEBUG MODE,D8MESSAGE ACCESS NAME,
"ESWITCHES" ,&FUNCTION KEYS,"Y",,)

6-8 2270521-9701

7

Debugging

7.1 DEBUG MODE
Debug mode allows you to perform the following functions:
. Specify address stops, single statement execution, or data item dumps
. Eliminate or change address stops
. Modify selected dataitems
. Designate the next address in the program to be executed -
¢« Wrile the contents of the screen to the message file
. Exit from the debug mode

. Quit execution of a task

7.2 DEBUGGING A COBOL MODULE

The debugger Is designed specifically for the COBOL run-time interpreter. At any of the following
times, the debugger assumes control of the video display terminal (VDT) from which the COBOL
program is executed:

. Before program execution
. When an address stop is encountered

. When a STOP RUN statement or an untrapped error condition causes the program to
terminate

When the debugger is in control of the VDT, it responds to the debug commands described later in
this section,

7.2.1 Aclivating the Debugger

Note that the COBOL debugger runs only in foreground mode. For this reason, use the Execute
COBOL Program Foreground (XCPF) or the Execute COBOL Task Foreground (XCTF) SCI com-
mand to activate the debugger. Before using XCTF o activate the debugger, you must first link the
task using the run-time Interpreter task entry module with the COBOL debugger
(.8$SYSLIB.RCBTSKD). However, when you use XCPF to activate the debugger, this step is not
necessary. The XCPF automatically bids one of two prelinked tasks (either with or without the
COBOL debugger), depending on your response to the DEBUG MODE prompt.

2270521-9701 71

Debugging

To activate the debugger, enter YES after the DEBUG MODE prompt. The debugger responds by
displaying the following information on your screen:

ADDRESS STOP: <currently active address stops>
mmmmmmxxyyyy D?

where:

ADDRESS STOP lists the currently active address stops; a maximum of four address stops
can be assigned.

mmmmmm names the module currently being executed.

xxyyyy are hexadecimal digits that specify the address of the next COBOL source statement
to be executed. If the source statement address is in a segmenied COBOL module, specify
the segment number In the first two digits {(xx) and the statement address in the next four
digits (yyyy). Omit the segment number when the source statement is not in a segmented
COBOL module.

D? indicates that you can now enter debug commands.
EXAMPLE 1

ADDRESS STOP: SEG 0100, SEG 050300, SUBONE 0050, SUBTWO 1cC
SGMEN 010000 D?

This example lists the four currently active address stops (SEG 0100, SEG 050300, SUBONE 0050,
and SUBTWO 1C). The name of the module that is currently executing is SGMEN. The source state-
ment to be executed next is located at address 010000. Note that this six-digit number indicates
that module SGMEN is a segmented COBOL module. The segment number is 01 and the source
statement is at address 0000.

EXAMPLE 2

ADDRESS STOP: SEG 0100
MAIN 0000 D?

This example lists only one currently active address stop (SEG 0100). The name of the module cur-
rently executing is MAIN. The source statement to be executed next is located at address 0000.
Note that this address is only four digits long, indicating that module MAIN is not located in a
segmented COBOL module. The source statement is located at address 0000 in the main program.

EXAMPLE 3

ADDRESS STOP: SEG 0100, SEG 050300, SUBONE 0050
GRAPHI 0040 D?

This example lists three active address stops (SEG 0100, SEG 050300, and SUBONE 0050). The
name of the module currently executing is GRAPHI. The source statementi to be executed next is
at the address 0040. Note that this address is only four digits long, indicating that module GRAPHI
is not located in a segmented COBOL module, The source statement is at the address 0040 in the
main program.

7-2 22705219701

Debugging

7.2.2 COBOL Debug Commands

COBOL debug commands consist of a single letter followed by a string of hexadecimal fields sep-
arated by commas. The total length of a debug command cannot exceed 20 characters, In the
command formats that follow, brackets indicate optional arguments. Blanks terminate the scan.
After executing a valid command, the debugger requests another command by displaying the
following prompt:

D?

If the debugger encounters an error in decoding a command, one of the following messages
appears:

Error Code Explanation
c? The command is unrecognizable.
5? A syntax error occurred in the operands.
v? The value of the operand(s) is out of range.

Debug supports ten commands. Table 7-1 lists these commands, and the following paragraphs
explain the commands.

Table 7-1. Debug Commands

Command Name

Assign Address Stop

Dump Data ltem

Exit Debug Mode

Change Program Location
Modify Dataltem

Quit Execulion

Resume Program Execution
Execute Next Single Statement
Undo Address Stop

Write Screen to Message File

SCwIDIrmor

NOTE
Any COBOL run-time errors return control to the debugger after

writing the error message to the message file. This allows inspec-
tion of dataitems.

2270521-9701 7-3

Debugging

Figure 7-1 contains a compiler output listing for a COBOL program. The paragraphs that follow
refer to sections of this figure.

DXCBL L.R.V YY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE

SOURCE ACCESS NAME:

OBJECT ACCESS NAME: DUMY
LISTING ACCESS NAME: MANUAL.PG.LST.FIGOD701
OPTIONS: M
PRINT WIDTH: 80
PAGE SIZE: 55
PROGRAM SIZE (LINES): 1000
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE
LINE DEBUG PG/LN T N s e e eamt st aa e e
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DATA-TYPES.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. TI-990,
6 OBJECT-COMPUTER. TI-990.
7 DATA DIVISION.
8 WORKING-STORAGE SECTION.
9
10 *%xkx ALPHANUMERIC
11 1 ANS PIC X(20) VALUE "CORRECT RESULT: 330",
12
13 *wkk ALPHABETIC
14 01 ABS PIC A(20) VALUE "COMPUTED RESULT:".
15
16 *kxx% DISPLAY SIGNED LEADING
17 01 NL PIC S9(6) SIGN LEADING VALUE +45,
18
19 *kkk DISPLAY SIGNED LEADING SEPARATE
20 01 NLS PIC $9(6) SIGN LEADING SEPARATE VALUE
24
22 *xk* DISPLAY SIGNED TRAILING
23 01 NT PIC $9(6) SIGN TRAILING VALUE 50.
24
25 **%xx NUMERIC DISPLAY SIGNED (TRAILING SEPARATE)
26 01 NSS PIC §9(6) VALUE 30.
27
28 *k%% NUMERIC DISPLAY UNSIGNED
29 01 NSU PIC 9(6) VALUE 25,
30
31 *%k%xx COMPUTATIONAL UNSIGNED
32 01 NCU PIC 9(5) CcOMP VALUE 15.
33
34 **x% COMPUTATIONAL SIGNED
35 01 NCS PIC S9(5) COMP VALUE 20.
36
Figure 7-1. Compiler Output Listing {Sheet 1 of 3)
74

MANUAL.PG.SRC.FIGO701

1

55.

2270521-9701

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

DXCBL
LINE
55
56
57
58
59
60
&1
62
63
64
65
66
67
68
69
70
71
72
73

DXCBL

DEBUG PG/LN A...

>0000
>0000
>0004
>0008
>0010

>0028
>002E
>0034
>003¢C
>0040

ZZZZZZ END PROGRAM.

ADDRESS SIZE

>002

>003

>005

>005

2270521-9

A

E

2

8

701

20

20

*hokk

01 NBS PIC S9(5) COMP-1 VALUE 5.
*x%x NUMERIC PACKED DECIMAL (COMPUTATIONAL-3)
01 NPS PIC S9¢(5) COMP-3 VALUE +10.
skxx MULTI-WORD BINARY UNSIGNED (COMPUTATIONAL-4)
01 NMB PIC 99 COMP-4 VALUE 35.
*#«%k MULTI-WORD BINARY SIGNED (COMPUTATIONAL-4)
01 NMS PIC S9(4) COMP-4 VALUE 40.
x%%%x NUMERIC EDITED
01 NSE PIC 229.
wxkx ALPHANUMERIC EDITED
01 ANSE PIC XX/XX/XX.
L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE
B e et e e ettt aeaeb e e
axkx GROUP
01 GRP.

BINARY SIGNED OR UNSIGNED (COMPUTATIONAL-1)

02 YR PIC XX.
02 MO PIC XX.
02 DA PIC XX.

PROCEDURE DIVISION.
BEGIN.

ACCEPT GRP FROM DATE.

MOVE GRP TO ANSE.

DISPLAY ANSE LINE 1 ERASE.

COMPUTE NSE = NBS + NPS + NCU + NCS + NSU +
NSS + NMB + NMS + ML + NT + NLS.

DISPLAY ANS LINE 2.

DISPLAY ABS LINE 3.

DISPLAY NSE LINE 3 POSITION 18.

-ACCEPT YR.

STOP RUN.

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:5S OPT=M PAGE
DEBUG ORDER TYPE NAME

ANS 0 ALPHANUMERIC ANS

ABS 0 ALPHABETIC ABS

NL 0 NUM LEAD SIGNED NL

NLS 0 NUM SEP LEAD SIGNED NLS

Figure 7-1. Compiler Qutput Listing (Sheet 2 of 3}

Debugging

% END OF FILE

Debugging

>0060 6 NT 0
20066 7 NSS 0
>006E 6 NsU 0
>0074 5 NCU 0
>007A 6 NCS 0
>0080 2 NBS 0
>0082 3 NPS 0
>0086 L NMB 0
>0088 2 NMS 0
>008A 3 NSE 0
>008E 8 ANSE 0
>0096 6 GRP 0
>0096 2 ANS 0
>0098 2 ANS 0
>009A 2 ANS 0

READ ONLY BYTE SIZE =
READ/MWRITE BYTE SIZE =
OVERLAY SEGMENT BYTE SIZE
TOTAL BYTE SIZE =

0 ERRORS

0 WARNINGS

Flgure 7-1.

7-6

NUM TRAIL SIGNED
NUM SEP LEAD SIGNED
NUMERIC UNSIGNED
COMP UNSIGNED

COMP SIGNED

BINARY SIGNED
PACKED SIGNED

MULTI BINARY

MULTI BINARY SIGNED
NUMERIC EDITED
ALPHANUMERIC EDITED
GROUP

ALPHANUMERIC

ALPHANUMERIC
ALPHANUMERIC

>00F8

>009E

>0000

>0196

NT
NSS
NSU
NCU
NCS
NBsS
NPS
NMB
NMS
NSE
ANSE
GRP
YR

MO
DA

Compiler Output Listing (Sheet 3 of 3)

2270521-9701

Debugging

7.2.2.1 Assign Address Stop Command (A). The A command indicates the address at which
normal execution of the program stops and the debugger assumes control. This address stop is
cleared whenever a breakpoint is set, but you can assign up to four address stops. After you
assign address stops, use the Resume command (R) to resume execution of the program. You can
use the Undo Address Stop (J) command to eliminate any address stops you assigned with the A
command. The A command is as follows:

AChhIhhhh[,PROGID]
where:

hh is an optional hexadecimal number signifying the segment number in PROGID at which
execution stops. When the segment number is omitted, it is assumed to be zero.

hhhh represents up to four hexadecimal digits specifying the address in program PROGID at
which execution stops. Leading zeros of the address may be omitted unless the segment
number Is specifled. The address is the address printed In the DEBUG column of the compiler
listing. (Refer to the datamaps in Figure 7-1.)

PROGID Is an optional operand that names the program unit in which the stop is located. If
omitted, the stop is assumed to be located in the program unit that is currently executing.

The following are examples of the A command:
Example ' Meaning

AD202 Assign an address stop in the current COBOL module at
address 0202.

AD12345,5UB1 Assign an address stop at location 2345 of segment 01 in pro-
gram SUB1.
NOTE
If a stop address is reached during execution, that address is elimi-
nated from the list of stop addresses. If you wish to stop at a given

address in a loop each time It is executed, you must assign that
address each time to program stops before restarting execution.

2270521-9701 7-7

Debugging

7.2.2.2 Dump Data Iltem Command (D). This command displays memory at a specified address
in the format of a specified data type. The D command has two possible formats. :

D Command: First Format. The first format of the D command displays data items from the DATA
DIVISION:

Dhhhh,dd[,TYPE]
where:

hhhh gives the hexadecimal address printed in the ADDRESS column of the compiler listing
that contains the data maps. (Refer to the ADDRESS column of the data maps in Figure 7-1.)

dd is a decimal number indicating the number of characters to be displayed. This information
also appears in the listing. {Refer to the SIZE column of the data maps in Figure 7-1.)

TYPE consists of two, three, or four letters that abbreviate the data type. (Refer to the DEBUG
column of the data maps in Figure 7-1.)

Both the data lype and its valid abbreviation are shown for each data item in the listing. The valid
abbreviations are as follows: '

Abbreviation Description

ABS Alphabetic

ANS Alphanumeric

ANSE Alphanumeric edited

GRP Group

HEX Default

NBS Binary signed (COMP-1)

NCS Computational signed (COMP)

NCU Computational unsigned (COMP)
NL Numeric leading signed

NLS Numeric leading separate signed

NMB Multiword binary (COMP-4)

NMS Multiword binary signed (COMP-4)
NPS Numeric packed signed (COMP-3)
NSE Numeric edited

NSS Numeric display signed

NSU Numeric display unsigned (DISP)
NT Numeric trailing signed

7-8 2270521-9701

Debugging

The following is an example of the first format of the D command:
Example Meaning

D096,6,GRP Display the conilents of a six-character data item
from the data division at address 096,

DOBE,6,NSU Display the six-character numeric field from the data
division at address 06E.

D Command: Second Format. The second format of the D command displays data items from the
LINKAGE SECTION of a separately compiled program:

DLdd{+hhhh],dd(,TYPE]
where:

L indicates that a data item from the LINKAGE SECTION of a separately compiled program is
to be displayed.

dd is an ordinal number specifying which data item of the linkage data items is to be
displayed.

+ hhhh is a hexadecimal offset from the starting address of the data item. You can omit this.

dd is a decimal number indicating the number of characters to be displayed. This information
also appears in the listing. (Refer to the SIZE column of the data maps in Figure 7-1.)

TYPE is a two-, three-, or four-letter abbreviation specifying the data type. When you do not
enter a type, the display of the dataitems is in hexadecimal,

The following is an example of the second format of the D command:

Example Meaning
DL1,5,HEX Display five characters of the first linkage item in
hexadecimal.
DL3+ F0,16,ANS Display sixteen alphanumeric characlers of the third

linkage item starting at offset FO.
7.2.2.3 Exit Debug Mode Command (E). This command discontinues execution of the current
user module under conirol of the debugger. The program continues to execute, but in normal
mode. The format of the command is as follows: '
E

No operand is required.

2270521-9701 79

Debugging

7.2,.2.4 Change Program Location Command {L). The L command designates the next addressin
the program to be executed. The format of the command is as follows:

Lixxlyyyy

where;

xx is an optional hexadecimal digit signifying the segment number. The default is zero.

NOTE

If you are currently executing in the fixed segment, you can only
change location within the fixed segment. If you are currently exe-
cuting in an independent segment, you can change location within
either that segment or the fixed segment.

yyyy Is a hexadecimal digit showing the address In the current program module where exe-
cution begins. This address is printed in the DEBUG column of the compiler listing.

NOTE

You must enter four hexadecimal digits for the address when you
specify the segment number. You can omil the leading zeros of the
address wher\gou do not specify the segment number. Unpredic-
lable results oocur If the value you give is nol the beginning of a
statement from the DEBUG column. (Refer to the dala maps in
Figure 7-1.)

The following are examples of the L command:

Example Meaning
L0404 Execute the current COBOL module starting at
address 0404,
L Execute the current COBOL module at the beginning

of the current program module.
NOTE

The L command has no effect when you enter the debugger after
normal program termination.

7-10 2270521-9701

Debugging

7.2.2.5 Wodify Data Item Command (M). The M command is used to overwrile the existing con-
tents of items in the DATA DIVISION of a program or in the LINKAGE SECTION of a separately
compiled program. Modifications can consist of either ASCIl strings or hexadecimal digits. The
command has six possible formats.

M Command: First Format. The first format for the M command is as follows:
Mhbhhh,>h(,h, ..., h]
where:

hhhh is the hexadecimal address printed in the ADDRESS column of the compiler listing that
contains the data maps.

> h[,h,....h] indicates a hexadecimal modification. One or more one- or two-digit hexadecimal
numbers can follow the right angle bracket (>). Each number is placed into one byte of stor-
age. Any numbers to the right of the first one are placed at memory locations whose
addresses are successively grealer than the initial hhhh hexadecimal address.

The following is an example of format one:

Example Meaning

M1237,>FF,20,01 Place >FF at location 1237, >20 al location 1238,
>0D at location 1239, >01 at location 123A.

M Command: Second Format. The second format for the M command is as follows:
Mhhhh,"string"

where:

hhhh is the hexadecimal address printed in the ADDRESS column of the compiler listing that
contains the datamaps.

“string” is the ASCII string to be placed at that hexadecimal address.

NOTE
To print the * characler within a string, you must enter that
character twice. For example, STR*"ING will yield STR“ING.
The following is an example of format two:
Example Meaning

M1FFO,"“TEXAS" Place the string TEXAS starting at memory location
>1FF0,

2270521.9701 711

Debugging

M Command: Third Format. The third format for the M command is as follows:
Mhhhh,"string",dd
where:

hhhh is the hexadecimal address, printed in the ADDRESS column of the compiler listing that
contains the data maps.

“string” is the ASCII string to be placed at that hexadecimal address.
dd is an optional decimal number indicating the total length of the field to be modified.
Operand dd must be equal to or greater than the number of characters in the ASCH string. If
operand dd is greater than the number of characters in the string, the difference between
them indicates the number of blanks which are appended to the right of the string and written
to memory.

The following is an example of format three:

Example Meaning

M100F “RIGHT PAD”,40 Place the string RIGHT PAD, followed by 31 blanks,
starting at memory location 100F,

M Command: Fourth Format, The fourth format for the M command is as follows:
Mtdd[+hhhh],>hi,h...h]
where:
L indicates that a data item from the LINKAGE SECTION of a separately compiled program is
to be modified.
WARNING
Users can accidentally modify data outside the LINKAGE SECTION.

Addresses for linkage items are not verified. It is the user’s respon.
sibility 1o enter correct addresses.

dd is a decimal ordinal number specifying which data item of the linkage data items is 1o be
modified.

+ hhhh is an optional hexadecimal offset from the starting address of the data item.

>h[,h..h] indicates a hexadecimal modification. One or more one- or two-digit hexadecimal
numbers can follow the right angle bracket { >). Each number is placed into one byte of stor-

age. Any numbers to the right of the first one are placed at memory locations whose
addresses are successively greater than those of the initial data item.

7-12 2270521-9701

Debugging

The following is an example of format four:

Example Meaning

ML4 + FO, > 1,D,20,FF Place >01, >0D, >20, and >FF starting at the
address of linkage item four plus >00F0.

M Command: Fifth Format. The fifth format for the M command is as follows:
Middl{+hhhhl,"string"

where:

L indicates that a data item from the LINKAGE SECTION of a separately compiled program is
to be modified.
WARNING
Users can accidentally modify data outside the LINKAGE SECTION.

Addresses far linkage items are not verified. It is the user’s respon-
sibility to enter correct addresses.

dd is a decimal ordinal number specifying which data item of the linkage data items is to be
modified.

+ hhhh is an optional hexadecimal offset from the starting address of the data item.
“string" is the ASCII string to be placed at that hexadecimal address.
The following is an example of format five:
Example Meaning

ML3,“INSTRUMENTS" Place the string INSTRUMENTS starting at the
address of the third linkage item.

M Command: Sixth Format. The sixth format for the M command is:
MLdd[+hhhh],"string",dd

where:

L indicates that a data item from the LINKAGE SECTION of a separately compiled program is
to be modified.

22705219701 7-13

Debugging

WARNING
Users can accidentally modify data outside the LINKAGE SECTION.

Addresses for linkage items are not verified. H is the user’s respon-
siblility to enter correct addresses.

dd is a decimal ordinal number specifying which data item of the linkage data items is to be
modified.
+ hhhh is an optional hexadecimal offset from the starting address of the data item.
“string" is the ASCII string to be placed at thal hexadecimal address.
dd is an optional decimal number indicating the total length of the field to be modified. It
must be equal to or greater than the number of characters in the ASCIl string. If it is greater,
the difference indicates the number of blanks that are appended to the right of the string and
written to memory.

The following is an example of format six:

Example Meaning

ML5,“LONG STRING",45 Place the string LONG STRING, followed by 34
blanks, at the address of the fifth linkage item.

7.2.2.6 Qulit Execution Command (Q). The Q command terminates the current user program
under control of the debugger and returns control to SCI. The formal of the command is as
follows:

Q

MNo operand is required.

7.2.2.7 Resume Program Execution Command (R). The R command resumes program execution
after you assign all address stops. The format of the command is as follows:

R
No operand is required,

7.2.2.8 Execute Next Single Statement Command (S8). The S command executes one COBOL
statement and returns control to the debugger. The format of the command is as follows:

S

No operand is required.

714 2970521-9701

Debugging

NOTE
The S command has no effect when the debugger is entered after

normal program termination.

7.2.29 Undo Address Stop Command {U). The U command eliminates address stops you
assigned with the A command. The format for the U command is as follows:

ULhhJhbhhh(,progid]l
where:

hh is an optional hexadecimal number signifying the segment number in progid at which the
address stop was assigned, When the segment number is omitted, it is assumed to be zero.

hhhh is four or less hexadecimal digits signifying the address in program progid at which an
address stop was assigned. This address is the address printed in the DEBUG column of the
compiler listing. (Refer to the data maps in Figure 7-1.) When you omit the segment number,
you can omit leading zeros of the address. When you specify a segment number, you must
enter four hexadecimal digits for the address.

Progid is an optional operand that names the program unit in which the address stop was
assigned. If you omit this operand, the address stop is assumed to be located in the program
that is currently executing.

The following are examples of the U command:

Example Meaning

uo202 Remove an address stop in the current module at
address 0202,

Uu012345,SUB1 Remove an address stop at location 2345 of segment 01
in program SUB1.

7.2.2.10 Write Screen to Message File Command (W). This command writes the contents of the
screen to the device or file you specifled in response to the prompt MESSAGE ACCESS NAME

that appeared when you executed the COBOL program or task. The format for the W command is
as follows:

W

No operand is required.

2270521-9701 715

Debugging

7.3 DEBUGGING OF ASSEMBLY LANGUAGE SUBROUTINES LINKED TO COBOL PROGRAMS

You can use an interactive symbolic debugging program to debug assembly language program
object modules linked to COBOL program object modules as subroutines. The interactive debug-
ger is provided as an operaling system utility; it is not the COBOL debugger. The interactive
debugger operates from either an Interactive VDT or an interactive hard-copy terminal.

The debugger allows you to display and modify central processing unlt (CPU) registers, workspace
registers, and memory. It also allows controlled execution of a task.

In the run mode, you can halt and resume. You can also set new breakpoints to halt the task. In the
simulation mode, the system analyzes the execution between each instruction. You can specify
trap conditions that interrogate the program counter {PC) or you can specify memory content.
Breakpoints designed to halt task execution can be conditional on a given number of accesses
within a specified range of PC values, memory locations, or communications register unit (CRU)
addraesses. You can set breakpoints at given siatus register (SR) values or supervisor calls (SVCs).

NOTE

You can use this method of debugging an assembly language
module only with a linked program image using the Execute COBOL
Task Debug (XCTD) command,

Figure 7-2 through Figure 7-5 are examples of debugging interactively. Figure 7-2 shows how the
interactive debugger operates under user control.

WARNING

Because of the way the system debugger is executed, there is a
possible conflict between it and a COBOL program. If the COBOL
program has been executed with the function keys enabled and the
System Debugger is then executed, the function keys will be dis-
abled. This problem is most common when the COBOL program
executes an ACCEPT/DISPLAY command while still in the System
Debugger. However, this problem may also occur at any time.

7-16 2270521-9701

Debugging

[JAGL :
ASSIGN GLOBAL LUN
LUNO:
ACCESS NAME: .PROFILE
PROGRAM FILE ?: YES
ASSIGNED LUNO = >4
[1XcTD
EXECUTE COBOL TASK DEBUG <VERSION: L.R.V. YYDDD>
PROGRAM FILE: >4
TASK ID OR NAME: 1
MESSAGE ACCESS NAME:
SWITCHES: 00000000
FUNCTION KEYS: NO

[lAB
ASSIGN BREAKPQINTS
RUN ID: >DC

ADDRESS(ES): OQ4ES6C+0D4E
[IRT
RESUME TASK

RUN ID: >DC
[isep
SHOW PANEL
RUN ID: >DC

MEMORY ADDRESS:

[ILM

LIST MEMORY
RUN ID: >DC
STARTING ADDRESS: #R5
NUMBER OF BYTES: #Ré
LISTING ACCESS NAME:
tlope
DELETE AND PROCEED FROM BREAKPOINT
RUN ID: >DC
DESTINATION ADDRESS(ES):
CIWAIT

Figure 7-2. Interactive Debugging Example

A debugging session includes these steps:

1. Assign a global LUNO to the program file containing the task to be executed. In
Figure 7-2, LUNO >4 is assigned to the program file . PROGFILE.

2. Execute the XCTD command to bid the task in suspended state as shown in Figure 7-2,
SCl assigns a task |D that is used as the initial value for the commands issued after this
step. Figure 7-2 uses >DC. The workspace registers and memory locations at the begin-
ning of the task appear on the VDT screen.

3. Examine the link edit listing to obtain the origin address of the assembly module to be
debugged. Figure 7-2 uses address 04E6C.

22705219701 7-17

Debugging

9.

Assign a breakpoint to a particular instruction address of the assembly language
module. This address will be the assembly module origin address (from the link edit
listing) plus a displacement of the instruction within the module. (Refer to Figure 7-3)
The task executes until it encounters the breakpoint address. Figure 7-2 uses 04E6C
plus adisplacement of Q4E.

NOTE

Overlay phases must be in memory before you can assign break-
point addresses within them. Therefore, you should link the
modules to be overlayed into the root phase (phase 0) of the task for
debugging purposes.

Begin execution of the task with the Resume Task (RT) command.
Issue a Show Panel (SP) command periodically to determine if execution has reached
the breakpoint address. If so, the task stalus appears on the VDT screen as

STATE = 06(BP).

Perform other operations such as List Memory (LM), Modify Workspace Register (MWR),
Modify Internal Registers (MIR), and Modify Memory (MM) while at this breakpoint.

Remove the breakpoint and resume the task with the Delete and Proceed from Break-
point (DPB) command. If you set another breakpoint, the task executes to the next break-
point; otherwise, the task executes to completion.

Wait for execution to complete with a Wait (WAIT) command.

Figure 7-3 is the COBOL module that calls the assembly language modules. Figure 7-4 and Figure
7-5 are examples of assembly language modules.

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:$$ OPT= PAGE 1
SOURCE ACCESS NAME: MANUAL.DN.SRC.COBOL
OBJECT ACCESS NAME: MANUAL.DN.OBJ.COBOL
LISTING ACCESS NAME: MANUAL.DN.LST.COBOL
OPTIONS:
PRINT WIDTH: 8o
PAGE SIZE: 55

PROGRAM SIZE (LINES): 1000

7-18

Figure 7-3. COBOL Program Calling Assembly Language Modules (Sheet 1 of 2)

2270521-9701

Debugging

pXceL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT= PAGE 2

LINE DEBUG PG/LN

A...B

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. GETDATE,
3 ENVIRONMENT DIVISION,
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. TI990.
6 OBJECT-COMPUTER. TI990.
7 DATA DIVISION.
8 WORKING-STORAGE SECTION,
9 01 SVC-BLOCK.
10 * SVC >03 RETRIEVES DATE AND TIME.
11 02 CALL-CODE PIC 9 COMP-4 VALUE >03.
12 02 ERROR-CODE PIC 9 COMP-4.
13 02 TIME-BUFFER-ADDRESS PIC 999 COMP-4.
14 01 TIME-BUFFER.
15 02 YEAR PIC 999 COMP-4.
16 02 JUL PIC 999 COMP-4.
17 02 HOUR PIC 999 COMP-4.
18 02 MIN PIC 999 COMP-4.
19 02 SEC PIC 999 COMP-4.
20 01 FIELD PIC 2229,
21 PROCEDURE DIVISION.
22 >0000 MAIN-SECTION.
23 >0000 CALL "ADDRES" USING TIME-BUFFER, TIME-BUfFER-ADDRESS.
24 >0002 MOVE >00 TO ERROR-CODE.
25 >0006 CALL "'IOCALL"™ USING SVC-BLOCK.
26 >0008 IF ERROR-CODE NOT = >00 STOP RUN.
27 >0010 MOVE YEAR TO FIELD.
28 >0014 DISPLAY FIELD ERASE LINE 1.
29 >001¢C MOVE JUL TO FIELD.
30 >0020 DISPLAY FIELD LINE 1 POS 6.
31 >0028 MOVE HOUR TO FIELD.
32 >002¢ DISPLAY FIELD LINE 1 POS 11,
33 >0034 MOVE MIN TO FIELD.
34 >0038 DISPLAY FIELD LINE 1 POS 16.
35 >0040 MOVE SEC TO FIELD.
36 >0044 DISPLAY FIELD LINE 1 POS 21.
37 >004cC ACCEPT FIELD LINE 24,
38 ZZZZZZ END PROGRAM. *k*x END OF FILE
READ ONLY BYTE SIZE = >0102
READ/WRITE BYTE SIZE = >0044
OVERLAY SEGMENT SIZE = >0000
TOTAL BYTE SIZE = >0146

G ERRORS

0 WARNINGS

Figure 7-3. COBOL Program Calling Assembly Language Modules (Sheet 2 of 2)

2270521-9701

719

Debugging

SDSMAC L.R.V YY.DDD

NAMES TABLE

SOURCE ACCESS NAME=
OBJECT ACCESS NAME=
LISTING ACCESS NAME=

ERROR ACCESS NAME=
OPTIONS=

ADDRES

SDSMAC L.R.V YY.DDD

MACRO LIBRARY

RETRIEVE DATA ITEM ADDRESS

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
06013
0014
0015
0016
0017

0018
0019
0020
0021
0022
0023

0024
0025
0026
0027
0028
0029
0030

0000
6000
0002
0004
0024
0000
0000
0002
0004
0006
0008
000A
000cC
000E
0010
0012

NO ERRORS,

7-20

0004
0000

co1p
€070
0281
0004
1603
c0Bo
¢0Do
C4C2
0380

IDT
*

MANUAL.DN.SRC
MANUAL.DN.OBJ
MANUAL,.DN.LST

PATHNAME=

'ADDRES'

HH:MM:5S
.ADDRES

.ADDRES
.ADDRES

HH:MM:SS

DAY, MMM DD, YYYY.

PAGE 0001

DAY, MMM DD, YYYY.

PAGE 0002

kA kkhh kAR N AR A AR hkhhhddkdhdhdhdid ikt ddhdhdd ki ddkdkidikdkikik

% % % ¥ ¥ * ¥ ¥

TITLE: ADDRES
REVISION: MM/DD/YY ORIGINAL
ABSTRACT: ADDRES IS CALLED TO RETURN THE RUNTIME ADDRESS

OF A DATA ITEM FOR USE BY THE TOCALL SUBROUTINE.

CALLING SEQUENCE:
CALL "ADDRES"™ USING VARIABLE-NAME, VARIABLE-ADDRESS

e e e e e o e g A & e e ke v ke e e 3 e o ok e ok ok sk e e A ke ke e e e e e e e e ok e ok e e ke e o ke e ek e e ek

*
DEF
DSEQ
" ADDRES DATA
1
WsP1 BSS
DEND
PSEG
START MOV
MOV
cI

JNE
MOV
MOV
MOV
RETURN RTWP
PEND
END
NO WARNINGS

ADDRES
WSP1,START

32

*R13,R0
*RO+,R1
R1,4

RETURN
*RO+,R2
*RO,R3
R2,*R3

TRANSFER VECTOR

WORKSPACE

PICK ARG LIST POINTER
GET ARGLIST BYTE COUNT
MUST BE 2 PARAMETERS

ELSE DO NOTHING

R2<- VARIABLE-NAME ADDR.
R3<- VARIABLE-ADDR PTR.
MOVE IN THE ADDRESS
RETURN TO CALLER

Figure 7-4. Assembly Language Module ADDRES

2270521-9701

SDS

NAMES TABLE

SOURCE ACCESS NAME=

LISTING ACCESS NAME=

Debugging

MAC L.R.V YY.DODD HH:MM:SS DAY, MMM DD, YYYY.

ERROR ACCESS MNAME=
OPTIONS=
MACRO LIBRARY PATHNAME=
AC L.R.V YY.DDD HH:MM:55 DAY, MMM DD, YYYY,
1SSUE SUPERVISOR CALL

I0CALL

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017

0018
0019
0020
0021
0022
0023

0024
0025
0026
0027
0028
0029

0000
0000
0002
0004
0024
0000
0000
0002
0004
0006
0008
000A
000cC
000E
0010

NG ERRORS,

2270521-8701

SDSM

0004
0000

co1D
co70
0281
0002
1602
080
2FD2
0380

IDT 'IOCALL'
*

MANUAL.DN.SRC.IQCALL
OBJECT ACCESS NAME= MANUAL.DN.OBJ.I0CALL
MANUAL.DN.LST.IOCALL

PAGE 0001

PAGE 0002

e Kk e i d e e e e ke v e ok ok e e ke e ok o ok e e ke e ok vk e i vk ok o e ok o ok e % e o ok o e e ok o ok e ok ok

TITLE: IOCALL
REVISION: MM/DD/YY

CALLING SEQUENCE:

* % %k % % % N

ABSTRACT: IOCALL IS CALLED TO ISSUE AN OPERATING SYSTEM
SUPERVISOR CALL.

CALL "TOCALL" USING SVC-CONTROL-BLOCK.

khkhkkkAhkkhhhhkhkhhkh Rk hkkkhhrkhhhhhhkhkhhh Ak hkhkhhhhkhhhkhhhdkhdkrk

*
DEF IOQCALL
DSEQ
"' IOCALL DATA WSP1,START
[}
TOCALL BSS 32
DEND
PSEG
START MOV *R13,R0
MOV *RO+,R1
CI R1,2

JNE RETURN
MOV *RO+,R2
XOP *RZ,15
RETURN RTWP
PEND
END
NO WARNINGS

TRANSFER VECTOR

WORKSPACE

PICK ARG LIST POINTER
GET ARGLIST BYTE COUNT
MUST BE 1 PARAMETER

ELSE DO NOTHING

R2<- SVC-CALL-BLOCK PTR.
X0P15-> SVYC-CALL-BLOCK
RETURN TO CALLER

Figure 7-5. Assembly Language Module IQCALL

7-21{7-22

8

Calling Subroutines

8.1 GENERAL

The CALL statement is used to call subroutines written in COBOL and other languages provided
the linkage conventions are compatible. Refer to the COBOL Reference Manual for a detailed
description of the CALL verb syntax.

8.2 COBOL SUBROUTINE LIBRARY PACKAGE

The COBOL Subroutine Library Package provides you with frequently used functions. Table 8-1
lists the subroutines; Appendix D lists the functions of the routines, calling sequences, descrip-
tions of each required argument, and error codes generated within the subroutines.

All data fields used as parameters to the COBOL subroutines MUST be aligned on word bound-
aries. This can be accomplished by making the parameter an 01-Level data item in the WORKING
STORAGE section of the program. There are no provisions in either the compiler or the run-time
package to test for this condition. The increase in program size in the compiler or run-time pack-
age could cause a space problem in user programs.

2270521-9701 81

Calling Subroutines

Table 8:1. COBOL Subroutines Library

Name Description

C$ADDP Embed the sign character with the last data character.

C$BKSP Backspace /O on sequential file. _

C$BSRT Sort an array on a given character string.

C$CARG Return USING argument information.

C$CBID Bid a GOBOL task.

C$CLOS Close VDT and output file.

C$CMPR Compare character strings logically.

C3CVDT Close all VDTs currently open.

C$DLTE Delete afile.

C$EXCP Turn off function key accessibility.

C$GROF Turn off graphics display option.

C$GRPH Turn on graphics display option.

C3$LOC Return address of data argument.

C$MAPS Map and return synonym value.

C$MFAP Modify file access privilege.

CSMKEY Modify a KIF alternate key attribute so thal il is nonmodifiable in program
declaration.

C$OPEN Open VDT and cutput fite.

C$PARM Get parameter from terminal communicatlons area.

C$RERR Return last file /O completion status.

C$RPRV Read previous /O on KIF.

C3$SEPP Separate embedded data character and sign characterinto data character and
separate trailing sign.

C$SETS Define or redefine synonym in terminal communications area.

C$SRCH Binary search array for specified key value.

C$sVC Issue an SVC to operaling system.

C$TMPF Set atemporary file flag that causes the next OPEN . . . OUTPUT statement to
create a temporary file,

C$WRIT Write the VDT screen contents to the output file or device.

8-2

2270521-9701

Calling Subroutines

All of these subroutines reside on the library .S$SYSLIB.C$SUBS. Use the LIBRARY or SEARCH
command to link them with the COBOL program object modules. These routines must be included
in the task segment of the link control file. A typical link control file, which can link any of the sub-
routines with COBOL program object modules, is as follows:

FORMAT IMAGE,REPLACE
LIBRARY .S$SYSLIB.C$SUBS
LIBRARY .SCI990.S$0BJECT
PROCEDURE RCOBOL

DUMMY

INCLUDE .S$SYSLIB.RCBPRC
TASK CBLTSK

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB,RCBMPD
INCLUDE <COBOL object module>
END

8.3 ASSEMBLY LANGUAGE SUBROUTINES

Assembly language subroutines provide capabilities to the COBOL program not available through
COBOL syntax. These capabilities include (but are not limited to) gaining access to system SVCs,
and interfacing a routine to application environment processors and specialized data handling
routines. To call assembly language routines, use the CALL statement. This statement transfers

control from one object module to another within the program.

The CALL statement can be used to call subroutines written in COBOL and other languages
provided the linkage conventions are compatible. For example, for the statement

CALL '"PROGA™ USING A1, A2, A3.

the COBOL compiler generates an argument list with the following format:

ARGLST DATAG6 byte count of the argument list (twice the number
of arguments)
DATA A1
DATA A2
DATA A3
NQTE

The argument list contains byte addresses. If the subroutine is
designed to address words, the COBOL programmer must ensure
that all parameters begin on a word boundary.

2270521-9701 8.3

Calling Subroutines

When the CALL statement Is executed, register 0 (R0) is loaded with the address of the argument
list, register 1 (R1) is loaded with the address of the argument decode routine, and subprogram
PROGA is entered via a Branch and Load Workspace Pointer (BLWP) insiruction. For example:

LI RO,ARGLST
LI R1,DEADDR
BLWP BPROGA

The argument decode routine is the assembly language programmer’s way of accessing infor-

mation about a data item. The BLWP instruction is used to transfer conirol to the subroutine
module. Subprogram PROGA must have an entry vector PROGA, defined as follows:

DEF PROGA

PROGA DATA WP WORKSPACE FOR PROGA
DATA START FIRST INSTRUCTION
WP BSS 32

START EQU $

I-END
Note that the subroutine in Figure 8-2 indirecily references register 0 of the calling routine by
using register 13. This occurs in Line 15.

To return to the COBOL module, PROGA must execute a Return With Workspace Pointer (RTWFP)
instruction (assuming registers 13, 14, and 15 have not been modified by PROGA).

Information about each argument in the USING list of a CALL statement is accessible to the
assembly language program through a COBOL run-time subroutine. This subroutine requires two
arguments {in RO, R1), as follows:

e The assembly language subroutine workspace register 0 must be loaded with the
relative argument number from the USING list for which information is needed.

* The assembly language subroutine workspace register 1 must be loaded with the
address of a 10-byte buffer in which to store the descriptive information.

Figure 8-2 shows an assembly subroutine example called from the COBOL example in Figure 8-1.

8-4 2270521-8701

Calling Subroutings

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 1
SOURCE ACCESS NAME: MANUAL.PG,.SRC.FIG0801
OBJECT ACCESS NAME: DUMY
LISTING ACCESS NAME: MANUAL.PG.LST.FIG0801
OPTIONS: M
PRINT WIDTH: 80
PAGE SIZE: 55
PROGRAM SIZE (LINES): 1000
DXCBL L.R.V YY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2
LINE DEBUG PG/LN S LN
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. COBOLARG.
3 * THIS EXAMPLE SHOWS SUBROUTINE LINKAGE USING
4 * THE CALL VERB. IT ALSO DEMONSTRATES A
5 * TECHNIQUE OF OBTAINING INFORMATION ABOUT
] * THE "USING'" ARGUMENTS BEING PASSED.
7 ENVIRONMENT DIVISION.
8 CONFIGURATION SECTION.
9 SQURCE-COMPUTER. TI-990.
10 OBJECT-COMPUTER. TI-990.
11 DATA DIVISION.
12 FILE SECTION.
13 WORKING-STORAGE SECTION.
14
15 *kkk ALPHANUMERIC
16 01 ANS PIC X(20) VALUE "CORRECT RESULT: 330",
17
18 #*xkk ALPHABETIC
19 01 ABS PIC A(20) VALUE '"COMPUTED RESULT:".
20
21 *k*% DISPLAY SIGNED LEADING
22 01 NL PIC S9(4) SIGN LEADING VALUE +45.
23
24 *kxk DISPLAY SIGNED LEADING SEPARATE
25 01 NLS PIC $9¢(46) SIGN LEADING SEPARATE VALUE 55.
26
27 *%kx DISPLAY SIGNED TRAILING
28 01 NT PIC $9(6) SIGN TRAILING VALUE 50,
29
30 *kk%x NUMERIC DISPLAY SIGNED (TRAILING SEPARATE)
31 01 NSS PIC $9(6) VALUE 30.
32
33 *kx% MNUMERIC DISPLAY UNSIGNED
34 01 NSU PIC 9(6) VALUE 25.
35
36 *hik COMPUTATIONAL UNSIGNED
37 01 NCU PIC 2(5) COMP VALUE 15.

Figure 8-1. Example of COBOL Routine Calling Assembler Subroutine (Sheet 1 of 4)

22705219701

8-5

Calling Subroutines

DXCBL

LINE
57
58
59
60
61
62
63
64
65
66
67
68
69
70
1
72
73
74
75
76
(&4
78
79
80
81
82
83
84

8-6

#%xx% COMPUTATIONAL SIGNED
01 NCS PIC S9(5) COMP VALUE 20.
#%%% BINARY SIGNED OR UNSIGNED (COMPUTATIONAL-1)
01 NBS PIC $9¢(5) COMP-1 VALUE 5.
#x%% NUMERIC PACKED DECIMAL (COMPUTATIONAL-3)
01 NPS PIC S9(5) COMP-3 VALUE +10.
#%x% MULTI-WORD BINARY UNSIGNED (COMPUTATIONAL-4)
01 NMB PIC 99 COMP-4 VALUE 35.
x%x%% MULTI-WORD BINARY SIGNED (COMPUTATIONAL-4)
01 NMS PIC $9(4) COMP-4 VALUE 40.
#xx% NUMERIC EDITED
01 NSE PIC 229.
L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE
DEBUG PG/LN AL uBuuseeesenaneenneranennnennesnesonssaseeaneeanens
*x%% ALPHANUMERIC EDITED
01 ANSE PIC XX/XX/XX.
*#xx% GROUP
01 GRP.
02 YR PIC XX.
02 MO PIC XX.
02 DA PIC XX.
01 DATA-LENGTH PIC 9(5).
01 DIGIT-LENGTH PIC 9(5).
01 ACTION PIC X.
01 sus PIC 99 COMP-1.
01 ROW PIC 99.

* BUFFER AREA IN WHICH ARGUMENT INFORMATION IS PLACED
* BY THE ASSEMBLER SUBROUTINE.

01

ARG-TABLE.

02 ARG-ENTRY OCCURS 18.
03 ARG-CODE PIC 9 COMP.
03 ARG-SCALE PIC 9 COMP.

03 ARG-DATA-LENGTH PIC S9(5) CcOoMP-1.
03 ARG-DIGIT-LENGTH PIC $9(5) COMP-1.
03 ARG-DATA-ADDRESS PIC $9(5) COMP-1.
03 ARG-PIC-ADDRESS PIC S9(5) COMP-1.

PROCEDURE DIVISION.

Figure 8-1. Example of COBOL Routine Calling Assembler Subroutine {Sheet 2 of 4)

2270521.9701

DXCBL
ADDRE

>002A

>003E

>0052

>0058

>0060

>0066

>006E

>0074

>007A

>0080

>0082

>0086

>0088

>0000
>0000
>0004

>0006
>000E
>0012

»>0026
>002E
>0030
>0030
>0036
>0040
>0046
>0050
>005A

8§ SIZE
20

20

Figure 8-1.

2270521-9701

MAIN-PROG.

MOVE SPACES TO ARG-TABLE.

CALL “DECODE" USING ARG-TABLE ANS ABS NL NLS
NT NSS NSU NCU NCS NBS NPS NMB NMS

NSE GRP "123456" +55 SPACE.

DISPLAY "DATA
DISPLAY "LENGTH
PERFORM DISP-ARG VARYING SUB FROM 1 BY 1

UNTIL SuUs > 18.

DISP-ARG.

COMPUTE ROW = SUB + 3.
MOVE ARG-DATA-LENGTH (SUB) TO DATA-LENGTH.
DISPLAY DATA-LENGTH LINE ROW.

MOVE ARG-DIGIT-LENGTH (SUB) TO DIGIT—LENGTH.
DISPLAY DIGIT-LENGTH LINE ROW POSITION 10.

END-DISP. EXIT.
ZZZZZZ END PROGRAM.

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS

DEBUG ORDER TYPE

ANS 0
ABS 0
NL 0
NLS 0
NT 0
NSS 0
NSU 0
NCU 0
NCS 0
NBS 0
NPS 0
NMB 0
NMS 0

ALPHANUMERIC

ALPHABETIC

NUM LEAD SIGNED

NUM SEP LEAD SIGNED

NUM TRAIL SIGNED

NUMERIC SIGNED

NUMERIC UNSIGNED

COMP UNSIGNED

COMP SIGNED

BINARY SIGNED

PACKED SIGNED

MULTI BINARY

MULTI BINARY SIGNED

DIGIT"
LENGTH" .

Calling Subroutines

LINE 1 ERASE.

ACCEPT ACTION LINE 24 PROMPT.
STOP RUN.

NAME

ANS

ABS

NL

NLS

NT

NSS

NSU

NCU

NCS

NBS

NPS

NMB

NMS

*%x% END OF FILE

PAGE 4

Example of COBOL Routine Calling Assembler Subroutine (Sheet 3 of 4)

8.7

Calling Subroutines

>008A 3 NSE 0 NUMERIC EDITED NSE

>Q08E 8 ANSE 0 ALPHANUMERIC EDITED ANSE

>0096 6 GRP 0 GROUP GRP

>0096 2 ANS 0 ALPHANUMERIC YR

>0098 2 ANS 0 ALPRANUMERIC MO

>0094A 2 ANS 0 ALPHANUMERIC DA

>009¢C 5 NSU 0 NUMERIC UNSIGNED DATA-LENGTH

>00A2 5 NSU 0 NUMERIC UNSIGNED DIGIT-LENGTH
>00A8 1 ANS 0 ALPHANUMERIC ACTION

>00AA 2 NBS 0 BINARY SIGNED sSus

>00AC 2 NSU 0 NUMERIC UNSIGNED ROW

>00AE 180 GRP 0 GROUP ARG-TABLE

>00AE 10 GRP 1 GROUP ARG-ENTRY

>00AE 1 NCU 1 COMP UNSIGNED ARG-CODE

>Q0AF 1 NCU 1 COMP UNSIGNED ARG-SCALE

>0080 2 NBS 1 BINARY SIGNED ARG-DATA-LENGTH
>0082 2 NBS 1 BINARY SIGNED ARG-DIGIT-LENGTH
>00B4 2 NBS 1 BINARY SIGNED ARG-DATA-ADDRESS
>0086 2 NBS 1 BINARY SIGNED ARG-PIC-ADDRESS
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE
ADDRESS SIZE DEBUG ORDER TYPE NAME

READ ONLY BYTE SIZE = >019¢C

READ/WRITE BYTE SIZE = >018E
OVERLAY SEGMENT BYTE SIZE >0000

TOTAL BYTE SIZE = >032A

0 ERRORS
0 WARNINGS

DXCBL L.R.V YY.DOD COMPILED:MM/DD/YY HH:MM:S5S OPT=M PAGE
PROGRAM USING COUNT

DECODE 19

Figure 8-1, Example of COBOL Routine Calling Assembler Subroutine (Sheet 4 of 4)

8-8

2270521-9701

SDSMAC L.R.V YY.DDD

Calling Subroutines

HH:MM:$S FRIDAY, NOV 07, 1980.

ACCESS NAMES TABLE PAGE 0001
SCURCE ACCESS NAME= MANUAL.PG.SRC.FIG0802
OBJECT ACCESS NAME= DUMY
LISTING ACCESS NAME= MANUAL.PG.LST.FIG0802
ERROR ACCESS NAME=
OPTIONS=
MACRO LIBRARY PATHNAME=
DECODE SDSMAC L.R.V YY.DDOD HH:MM:5S FRIDAY, NOV 07 1980.
PAGE 0002
0001 IDT 'DECODE'
0002 * TITLE: DECODE
0003 * ABSTRACT: OBTAIN €OBOL "USING'" ARGUMENT INFORMATION AND
0004 * RETURN INFO TO CALLER
0005 * CALLING SEQUENCE:
0006 * <RO>::ADDRESS OF ARGUMENT LIST
0007 * WORD 0: LENGTH OF ARG LIST IN BYTES
0008 * WORD 1-N: ARGUMENT ADDRESS
0009 * <R1L::ADDRESS OF ARG DECODE ROUTINE
0010 * CALL TO 'DECODE' IS MADE VIA 'BLWP' INSTRUCTION
0011 DEF DECODE
0012 0000 0004' DECODE DATA WS,ARGQO0
0002 0024
0013 0004 WS BSS 32
0014 0024' ARGOOO EQU $
0015 0024 CO09D MOV %R13,R2 GET ADDR ARG LIST
0016 0026 COF2 MOV *R2+,R3 GET NUMBER OF ARGUMENTS
0017 0028 0913 SRL R3,1 CONVERT TO WORDS
0018 002A 0206 LI R6,1 INITIALIZE TO FIRST ARG
0o2c 0001
0019 002E €072 MOV *R2+,R1 GET ARG TABLE ADDRESS
0020 0030 0204 LI R&,10 LENGTH OF DOPE ENTRY
0032 000A
0021 0034 Cc16D MOV 2(R13),R5 ARG DECODE ROUTINE
0036 0002
0022 0038' ARGO10 EQU ¢
0023 0038 C006 MOV R6,RO SET ARG NUMBER
0024 003A 0415 BLWP *R5 MAKE CALL
0025 003C 1605 JNE ARGO20 IF ERROR
0026 003E 0603 DEC R3 SET UP FOR NEXT ARG
0027 0040 1203 JLE ARGOZ20 NO MORE ARG
0028 0042 AO44 A R4,R1 INCR BY ARG ENTRY LENGTH
0029 0044 0586 INS Ré6 INCR ARG COUNT
0030 0046 10F8 JMP ARGO10
0031 0048 0380 ARGO20 RTWP
0032 END
NO ERRORS, NO WARNINGS

Figure 8-2, Example of Assembler Subroutine Called by COBOL

2270521-9701

89

Calfing Subroutines

Refer to Appendix D for details on the routine, C$CARG. This routine is supplied with the COBOL
Subroutine Library Package, which returns descriptive information for any given argument.

The COBOL calling module must provide the following 10-byte buffer.

01 DATA-BLOCK.

02 DATA-CODE PIC 99 COMP.
02 DATA-SCALE PIC 99 COMP.
02 DATA-LENGTH PIC S9(5) COMP-1.
02 DATA-DIGIT-LENGTH PIC S8(5) COMP-1,
02 DATA-ADDR PIC S9(5) COMP-1.
.0Z DATA-PIC-ADDR PIC S9(5) COMP-1.

DATA-CODE is the section type containing the argument declaration.

Bits 0-2 contain one of the following:

Bits Description
110 Overlay segment literal
100 Literal

010 Linkage

001 File or working storage

Bits 3-7 contain the format code, as shown in Table 8-2:

Table 8-2. Format Codes for Calling Module

Debug

Bits 3-7 Type Name Description
0000X NSE Numeric String Edited (X =1if BLANKWHEN ZERO)
00010 FIG Figurative Constant
0010X ABS Alphabelic String {X =1 if JUSTIFIED RIGHT)
01000 ANSE Alphanumeric String Edited
0101X ANS Alphanumeric String (X = 1 if JUSTIFIED)
01100 GRP Group {fixed size)
01101 GRP Group (variable size)
10000 NSU Numeric String Unsigned
10010 NSS Numeric String Separate Trailing Signed Character
10011 NLS Numerlc String Separaie Leading Signed Character
10100 NCU Numeric Gomputational Unsigned
10110 NCS Numeric Computational Separate Trailing Sign Character
10111 NT Numeric String Tralling Slgned Character
11010 NPS Numeric Packed Signed
11011 NL Numerlc String Leading Signed Character
11000 NX Index Data ltem
11100 NUMERIC Complier Generated TEMP
11101 NMB Multlword Binary (COMP-4)
11110 NBS Numeric Binary Signed (COMP-1)
11111 NMS Multiword Binary Signed (COMP-4)

8-10 2270521-9701

Calling Subroutines

DATA-SCALE contains the data scaling factor needed to express the dataitem as an integer times
a power of 10; to express 1.2340 as an integer requires a scale of —3{thatis, 1234 x 107}

DATA-LENGTH contains the actual data item storage size. COMP data length is the number of
specified digits in the piclure clause plus the sign, if present. For example,

$9(3) COMP has alength of 4.
9(2) COMP has a length of 2.

COMP-1 data length is always 2. For example,

$59(3) COMP-1 has alength of 2.
9(5) COMP-1 has alength of 2.

DISPLAY with SIGN LEADING or SIGN TRAILING or no “'S" in the picture clause; data length is the
number of specified digits in the picture clause. For example,

S9(3) SIGN TRAILING has a length of 3.
S9(3) SIGN LEADING has alength of 3.
9(3) has a length of 3.

DISPLAY with SIGN SEPARATE clause or with no SIGN clause; data length is the number of speci-
fied digits in the picture clause plus the sign. Forexample,

S9(3) SIGN SEPARATE has alength of 4.
S9(5) SIGN TRAILING SEPARATE has alength ot 6.
59(3) has alength of 4.

COMP-3 data length is the number of specified digits in the picture clause, forced upward to be
odd, plus 1, divided by 2. For example,

$9(3) COMP-3 has a length of 2.
S9(4) COMP-3 has a length of 3.

COMP-4 data length is the number of specitied digits in the picture clause, as follows:

1-2 digits yield data length of 1 byte.

3-4 digits yield data length of 2 bytes.

5-9 digits yield data length of 4 bytes.
10-18 digits yield data length of 8 bytes.

For example,

$9(2) COMP-4 has a length of 1.
S9(4) COMP-4 has alength of 2.
S9(5) COMP-4 has a length of 4,
S9(15) COMP-4 has alength of 8.

2270521-9701 8-11

Calling Subroutines

DATA-DIGIT-LENGTH contains the number of digit positions specified in the picture clause.
COMP-3 is forced odd. For example,

59(3) COMP has a value of 3.
9(3) COMP has a value of 3.
59(3) COMP-1 has avalue of 3.
9(5) COMP-1 has avalue of 5.
$9(3) has avalue of 3.
S9(3) SIGN LEADING has avalue of 3,
9(3) has avalue of 3.
S9(3) SIGN SEPARATE has a value of 3.
S59(5) SIGN TRAILING SEPARATE has avalue of 5.
$9(3) COMP-3 has avalue of 3.
59(4) COMP-3 has avalue of 5.

DATA-ADDR contains the address of the data item. DATA-PIC-ADDR contains the address of the
data picture for the editing data types NSE and ANSE.,

812 2270521-9701

9

Interfacing to Productivity Tools

9.1 GENERAL
The following productivity tools can interface with COBOL modules:
* TIFORM
. Sort/Merge
. Database Managementi System (DBMS)
. Query

. Communications

9.2 TIFORM

TIFORM is a software utility package for controlling the interactive interface to an application.
TIFORM provides convenient control of complex screen formats for COBOL applications. TIFORM
includes an interaclive screen drawing capabillty and a screen description language compiler.
Through the use of these tools, TIFORM isolates the description of the screen format from the
procedural code of the application. This allows applications tc become independent of the ter-
minal. TIFORM also includes:

. All available VDT featuras (blink, dim, high-intensity, no display)
. Character and fleld tevel editing
. Significant improvement in the time required to develop interactive applications
The entry points provided for COBOL access to the TIFORM applications inlerface routines

(Table 9-1) are all of the form CF$xxx or CX$xxx, where xxx denotes a unique TIFORM function.
Refer to the TIFORM Reference Manual for a detalled explanation of these calls.

2270521-9701 91

Interfacing to Productivily Tools

Table 9-1. COBOL Entry Points to the Applications Interface Routines

Calls Meaning
CX$AEK Arm Event Keys
CX$CF Close Form
GCX$CN Coniro! Functions
CX$DAK Disarm Event Keys
CX$OF Open Form
CX$pPs Prepare Segment
CX$REA Read a Group
CX$REX Read, Indexed
CX$RF Reset Form
CX$RFX Reset Form Indexed
CX$RXC Read, Indexed, with Cursor Return
CX$3TS Declare Status Block
CXSWM Write Message
CX$WRC Write, Indexed, with Reply, and Cursor Return
CX$WRI Write a Group
CX$WWR Write with Reply
CXIWX Write, Indexed
CX$WXR Write, Indexed, with Reply

Figure 9-1 illustrates how a COBOL module interfaces with TIFORM. Figure 9-2 illustrates the
TIFORM screen description. The following serves as the link control file for linking the COBOL
module with the TIFORM module.

FORMAT IMAGE,REPLACE

LIBRARY .SSTIFORM.O TIFORM INTERFACE MOODULES
PROC RCOBOL

DUMMY

INCLUDE .S$SYSLIB.RCBPRC

TASK TIFRMTSK

INCLUDE .S$SYSLIB.RCBTSK

INCLUDE .S$$SYSLIB.RCBMPD

INCLUDE EX.TIFORM COBOL MODULE
INCLUDE (CX$MTASK)

END

Figure 9-1. COBOL Module Interfacing With TIFORM (Sheet 1 of 4)

9.2 22705219701

Interfacing to Productivity Tools

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 1

SOURCE ACCESS NAME:
OBJECT ACCESS NAME:
LISTING ACCESS NAME:

MANUAL.PG.SRC.FIG0901
MANUAL.PG.0BJ.FIG0901
MANUAL.PG.LST.FIGO901

OPTIONS: M
PRINT WIDTH: 80
PAGE SIZE: 55
PROGRAM SIZE (LINES): 1000
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2
LINE ODEBUG PG/LN S .

IDENTIFICATION DIVISION.

2 PROGRAM-ID. TIFORM.
3 * THIS PROGRAM DEMONSTRATES CALLING TECHNIQUE FOR
& * INTERFACING TIFORM WITH COBOL.
5 ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.
7 SOURCE-COMPUTER. TI-990.
'8 OBJECT-COMPUTER. TI-990.
9 DATA DIVISION.
10 WORKING-STORAGE SECTION.
1
12 01 INPUT-DATA.
13 03 EMPLOYEE-NO PIC X{6).
14 03 CLEAR-NAME PIC X{(30) VALUE LOW-VALUES.
15 01 READ-WRITE-DATA.
16 03 EMPLOYEE-NAME PIC X(30).
17 03 DONE . PIC X VALUE ‘''N'".
18 01 NUMBER-DATA PIC X(30) VALUE
19 "000000111111222222333333444444"",
20 01 NUMBER-TABLE REDEFINES NUMBER-DATA.
21 03 NUMBER-ENT PIC X(6) OCCURS 5.
22 01 NAMES-DATA PIC X{(50) VALUE
23 "A, ANTOIN B. BARTOK C. CARTER D. DARWIN E. ERDLE™.
24 01 NAMES-TABLE REDEFINES NAMES-DATA.
25 03 NAME-ENT PIC X(10) OCCURS 5.
26 01 TIFORM-STATUS-BLOCK.
27 03 FORM-STATUS PIC 99.
28 03 OPSYS-STATUS PIC XX.
29 03 FILLER PIC X(36).
30 01 FORM-NAME PIC X(6) VALUE "DEMOFM".
31 *SYNONYM *DIRECTRY' IS IMPLIED BY BLANKS.
32 01 DIRECTORY PIC XX VALUE " ",
33 *SYNONYM 'ME' IS IMPLIED BY BLANKS.
34 01 TUBE PIC XX VALUE " .
35 01 SEG-NAME PIC X(6) VALUE "SEG1 .
36 01 GRP1 PIC X(6) VALUE "GROUP1".
37 01 GRP PIC X{(6) VALUE "GROUPA".
Figure 9-1. COBOL Module Interfacing With TIFORM (Sheet 2 of 4)

2270521-971

9:3

interfacing to Productivity Toofs

38 01 X PIC 9.

3¢ PROCEDURE DIVISION.

40 >0000 MAIN-PROGRAM.

41 *kk%k DECLARE STATUS BLOCK *%kkk

42 >0000 CALL "CX$STS'™ USING TIFORM-STATUS-BLOCK.

43 *kkkkx QPEN FORM *%x%x*

44 >0002 CALL "CXSOF' USING FORM-NAME,

45 DIRECTGQRY, TUBE.

46 *kkkkik PREPARE SEGMENT #%%xx

47 >0004 CALL "CX$PS'" USING SEG-NAME.

48 >0008 READ NO.

49 >0008 MOVE LOW-VALUES TO EMPLOYEE-NO.

50 wkkkk WRITE WITH REPLY #%#%x

51 >000¢ CALL "CXBWWR' USING GRP1, INPUT-DATA, INPUT-DATA.

52 >000€ MOVE SPACES TO EMPLOYEE-NAME.

53 >0012 PERFORM FIND-NO VARYING X FROM 1 BY 1

54 UNTIL X > 5.

55 *hkkk WRITE WITH REPLY *%*x+%

56 >0026 CALL "CX$WWR" USING GRP, READ-WRITE-DATA,

DXCBL L.R.V YY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3
LINE DEBUG PG/LN .

57 READ-WRITE-DATA.

58 >0028 IF DONE = "“N" GO READ-NO.

59 *hkkkx CLOSE FORM *kxiw

60 >0030 CALL '"CXS$CF'.

61 >0034 THATS-ALL.

62 >0034 STOP RUN.

63 >0036 FIND-NO.

64 >0036 IF EMPLOYEE-NO = NUMBER-ENT(X)

65 MOVE NAME-ENT(X) TO EMPLOYEE-NAME,

66 MOVE 6 TO X;

67 ELSE IF X = 5 MOVE "INVALID NUMBER" TO

68 EMPLOYEE-NAME.

69 2227227 END PROGRAM. *%% END OF FILE
DXCBL L.R.V YY.ODD COMPILED:MM/DD/YY HH:MM:S5 OPT=M PAGE 4
ADDRESS SIZE DEBUG ORDER TYPE NAME

>002A 36 GRP 0 GROUP INPUT-DATA

>002A 6 ANS 0 ALPHANUMERIC EMPLOYEE-NO

>0030 30 ANS 0 ALPHANUMERIC CLEAR-NAME

>004E 31 GRP 0 GROUP READ-WRITE~DATA

>004E 30 ANS 0 ALPHANUMERIC EMPLOYEE-NAME

>006C 1 ANS 0 ALPHANUMERIC DONE

Figure 9-1. COBOL Module Interfacing With TIFORM (Sheet 3 of 4)

9-4 2270521-9701

>006E

>006E
>006E

>008¢C

>008¢C
>008¢

>00BE
>00BE
>00c0
>00Eé
>00EC
>00EE
>00F0
>00F6
>00FC

>0102

30 ANS
30 GRP
6 ANS
50 ANS
50 GRP
10 ANS
40 GRP
2 NSU
2 ANS
6 ANS
2 ANS
2 ANS
6 ANS
6 ANS
6 ANS
1 NSU

READ ONLY BYTE SIZE

READ/MRITE BYTE SIZE

=

(==

OVERLAY SEGMENT BYTE SIZE

TOTAL BYTE SIZE =

0 ERRORS

0 WARNINGS

DXCBL
PROGRAM

CX$CF
CX$OF
CS$Ps
CX$STS
CXSUWR

2270521-9701

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS
USING COUNT

W= = WO

Figure 9-1,

ALPHANUMERIC

GROUP
ALPHANUMERIC

ALPHANUMERIC

GROUP
ALPHANUMERIC

GROUP

NUMERIC UNSIGNED

ALPHANUMERIC

ALPHANUMERIC

ALPHANUMERIC

ALPHANUMERIC

ALPHANUMERIC

ALPHANUMERIC

ALPHANUMERIC

NUMERIC UNSIGNED

>0154
>0112
>0000

>0266

interfacing to Productivity Tools

NUMBER-DATA

NUMBER-TABLE
NUMBER-ENT

NAMES-DATA

NAMES-TABLE
NAME-ENT

TIFORM-STATUS-BLOCK
FORM-STATUS
OPSYS-STATUS

FORM-NAME

DIRECTORY

TUBE

SEG-NAME

GRP1

GRP

X

OPT=M PAGE 5

COBOL Module Interfacing With TIFORM {Sheet 4 of 4)

9-5

interfacing to Productivity Tools

SEGMENT MASK MSK1,CLEAR=Y.

DISPLAY GR=Y,
M(01,01)
‘BLLLLLLLLLLLLLLLLLELCLLLLLLLLLLLE Lt bL bbb LELLL Lt

MC01,73) 'LLLLLLLC'.

M(02,01> 'I*.

DISPLAY GR=N,

M(02,23) 'DEMONSTRATTION'.
M(02,52) 'F O R M'.

DISPLAY GR=Y.

M(02,80) 'I',
M(03,01) '1°,
M(03,80) 'I'.
M(04,01) 'I'.

M(04,80) I,
DISPLAY GR=N.
M(04,03) 'Employee No.:'.
MC(04,25) '"Employee Name:'.
MC04,72) 'Done?'' ',
DISPLAY GR=Y
M(05,01)
*DLLLLLLLL L L L Ll Ll L L L Ll L L L LLL L L L Ll

M{05,73) 'LLLLLLLE',

END SEGMENT MASK MSK1.
SEGMENT SEG1, (DEMOFM) , MSK1.

FIELD NUMBER.
POSITION (4,17)L6.
MIN LEN=6.
CHAR LIST=DIGITS.

Figure 9-2. TIFORM VDT Screen Description (Sheet 1 of 2)

9-6 2270521-9701

Interfacing o Produclivity Tools

END FIELD NUMBER.
FIELD NAME.
POSITION (4,40)L30.
OUTPUT.
END FIELD NAME.
FIELD YESNOF.
POSITION (4,78)L1.
REQ,
CHAR LIST=YESNO.
END FIELD YESNOF.
LIST CHAR DIGITS=0..9.
LIST CHAR YESNO='Y','N'.
GROUP GROUPA=NAME,YESNOF.

GROUP GROUP1=NUMBER, NAME.
END SEGMENT SEG1.

Figure 9:2. TIFORM VDT Screen Description (Sheet 2 of 2)

9.3 SORT/IMERGE
A comprehensive Sort/Merge package is supporied. SCI commands provide access to the

Sort/Merge package in batch or interactive mode. Both Sort and Merge support the following
features:

* Record selection

. Reformatting on input

* Summarizing on output
Ascending key order, descending key order, or an alternate collating sequence may be specified.
Any number of keys can be specified as long as the total is less than 256 characters. The merge
process supports up to five tnput files. The sort process allows the following:

. Key sort (tag-along)

¢ Summary sort (summary tag-along)

. Address only sort
Figure 9-3 is a COBOL routine that calls Sort/Merge and passes records read by COBOL to Sort/

Merge. The sorted records are output to adisk file.

2270521-9701 9.7

Interfacing to Productivily Tools

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE
SOURCE ACCESS NAME: MANUAL.PG.SRC.FIG0903
OBJECT ACCESS NAME: DUMY
LISTING ACCESS NAME: MANUAL.PG.LST.FIGO903
OPTIONS: M
PRINT WIDTH: 80
PAGE SIZE: 55

PROGRAM SIZE (LINES): 1000

OXCBL L.R.V YY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE

LINE DEBUG PG/LN I . T YT

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. CPNP.

3 *THIS IS A SORT/MERGE INFORMATION QUEUE TEST, IT
4 *TESTS THE CASE WHERE INPUT IS5 DIRECTED BY THE

5 *COBOL PROGRAM (3aPROC®) AND OUTPUT IS DIRECTLY

6 *FROM THE SORT/MERGE TO A FILE (NO @PROCQ).

7 AUTHOR. TEXAS INSTRUMENTS FDT.

8 DATE-WRITTEN. 11-6-76.

9 ENVIRONMENT DIVISION.

10 CONFIGURATION SECTION.

11 SOURCE-COMPUTER. TI-990.

12 0BJECT-COMPUTER. TI-990.

13 INPUT-OQUTPUT SECTION.

14 FILE-CONTROL.

15 SELECT INFILNAME ASSIGN TO INPUT "INFILE";
16 ACCESS MODE IS5 SEQUENTIAL.

17 DATA DIVISION.

18 FILE SECTION.

19 FD INFILNAME

20 DATA RECORD IS INFILRCRD

21 LABEL RECORDS ARE STANDARD

22 RECORD CONTAINS 80 CHARACTERS

23 BLOCK CONTAINS 10 RECORDS.

24 01 INFILRCRD PIC X(80).

25 WORKING-STORAGE SECTION.

26 77 MAX-NO-RECS PIC 9(5) VALUE IS 10

27 USAGE IS COMP-1.
28 77 STATIS PIC 9(5) USAGE IS COMP-1.
29 77 OUTSTAT PIC 92(5).

30 77 RECORD-LENGTH PIC 9(5) VALUE IS 80

31 USAGE IS COMP-1,
32 77 RECORD-AREA-LENGTH PIC 9(5) USAGE IS COMP-1.
33 77 RETES-RECEIVED PIC 9(5) USAGE IS COMP-1.
34 77 OFILRCRD PIC X(80).

Figure 9-3. COBOL Routine Calling Sort/Merge (Sheet 1 0f7)

9-8

2270521-9701

interfacing to Productivity Tools

35 77 ALLDONE PIC 9(5) VALUE IS ZERO

36 USAGE IS COMP-1,

37 *SORT-CONTROL-BLOCK CONTAINS THE SORT/MERGE

38 *CONTROL SPECIFICATIONS,

39 01 SORT-CONTROL-BLOCK.

40 03 HEADER.

41 05 SEQ PIC X{(5) VALUE IS "00000'".

42 05 FILLER PIC A VALUE IS "H".

43 05 SORT-TYPE PIC A(6) VALUE IS "SORTR".

1 05 MAX-TOT-CONTL-LEN PIC 9(5) VALUE IS é.

45 05 ASCND-DSCND PIC A VALUE IS "A",

46 05 FILLER PIC X{(7) VALUE IS SPACES,

47 05 COLLATNG-SEQ PIC X VALUE IS SPACE.

48 05 PRINT-OPTION PIC X VALUE IS "4,

49 05 OUTPUT-OPTION PIC X VALUE IS SPACE.

50 05 OUTPUT-REC-LEN PIC X{4) VALUE IS "0080".

51 05 VERIFY-OPTN PIC XX VALUE IS SPACE.

52 05 WRK-SPACE PIC X(5) VALUE 1§ "08000",

53 05 FILLER PIC X(5) VALUE IS SPACES.

54 *QUTPUT IS DIRECTLY FROM THE SORT TO A FILE.

55 03 OUT-FILE-SPEC.

56 05 SEQ PIC X(5) VALUE IS "00001%",
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3
LINE DEBUG PG/LN L

57 05 FILLER PIC A VALUE 1S “'D",

58 05 FILE-USE PIC A VALUE IS "0,

59 05 FILE-TYPE PIC A VALUE IS "'s".

60 05 PATHNAME PIC X{(36) VALUE IS '".OCPNP".

61 03 CNT-OUT-FILE-$SPEC,

62 05 SEQ PIC X(5) VALUE IS "00002".

63 05 FILLER PIC A VALUE IS "D,

64 05 FILE-USE PIC A VALUE IS "A",

65 05 LOG-REC-SIZ PIC 9(4) VALUE IS 80.

66 05 PHY-REC-SIZ PIC 9(4) VALUE IS 800.

67 05 NUM-PHY-REC PIC X(8) VALUE IS SPACES.

68 05 FILLER PIC X(21) VALUE IS SPACES,

69 03 WRK-FILE-SPEC.

70 05 SEQ PIC X(5) VALUE Is '"00003",

7 05 FILLER PIC A VALUE IS ''D".

7e 05 FILE-USE PIC A VALUE "W,

73 05 EXPAND-ALLOC-FLG PIC X VALUE IS "E".

74 05 VOLUME PIC X{(8) VALUE IS "DSO01".

75 05 FILLER PIC X{(28) VALUE IS SPACES.

76 *INPUT IS DIRECTED BY THE COBOL PROGRAM.

Figure 9-3. COBOL Routine Calling Sort/Merge (Sheet 2 ot 7)

2270521-9701 9.9

Inferfacing to Productivity Tools

77 03 INPT-FILE-DESCRPT.
78 05 SEQ PIC X(5) VALUE IS '00004".
79 05 FILLER PIC A VALUE IS 'D".
80 05 FILE-USE PIC A VALUE IS "'I".
81 05 FILE-TYPE PIC A VALUE IS 'S',
82 05 PATHNAME PIC X{(36) VALUE IS "@PROLA".
83 03 INPT-FILE-CONTIN.
B4 05 SEQ PIC X{(5) VALUE IS "00008".
85 05 FILLER PIC A VALUE IS "D'.
86 05 FILE-USE PIC A VALUE IS A",
87 05 LOG-SIZE PIC X{4) VALUE IS '008O".
88 05 FILLER PIC X(4) VALUE IS SPACES.
89 05 NUM-SRT-RECS PIC X(B8) VALUE IS "00000401".
90 05 FILLER PIC X(21) VALUE IS SPACES.
M 03 REFORMAT-DESCRIPTION-0.
92 05 SEQ PIC X{(5) VALUE IS "00010",
93 05 FILLER PIC A VALUE IS '"F".
94 05 FIELD-TYPE-CMMT PIC X VALUE IS 'N'.
95 05 CHARACTR-USE PIC A VALUE IS "c",
96 05 FIELD-LOC.
97 07 BEG-RECRD-POS PIC X{4) VALUE IS “0032".
98 07 END-RECRD-POS PIC X{(4) VALUE IS “0037",
99 05 CONDTN-FORCD-CHAR PIC X VALUE IS SPACE.
100 05 FORCD-CHAR PIC X VALUE IS SPACE.
101 05 CONTIN-LIN PIC X VALUE IS SPACE.
102 05 OUFLW-FLD-LEN PIC X(3) VALUE IS SPACES. (
103 05 FILLER PIC X(22) VALUE IS SPACES.
104 03 REFORMAT-DESCRIPTION.
105 05 SEQ PIC X(5) VALUE IS "00014".
106 05 FILLER PIC A VALUE IS "fF",
107 05 FIELD-TYPE-CMMT PIC X VALUE IS D",
108 05 CHARACTR-USE PIC A VALUE IS "C™.
109 05 FIELD-LOC.
110 07 BEG-RECRD-POS PIC X(4) VALUE IS "0001".
11 07 END-RECRD-POS PIC X(4) VALUE IS "0031".
112 05 CONDTN-FORCD-CHAR PIC X VALUE IS "C",
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4
LINE DEBUG PG/LN A...Biuiiuiuuiiavurnsarsanensanesannsanssssesanssaronsnsnsnnnns
113 05 FORCD-CHAR PIC X VALUE 1S SPACE
114 05 CONTIN-LIN PIC X VALUE 1S SPACE.
115 05 OUFLW-FLD-LEN PIC X(3) VALUE IS SPACES.
116 05 FILLER PIC X{(22) VALUE IS SPACES.
117 03 REFORMAT-DESCRIPTION-3.
118 05 SEQ PIC X{5) VALUE IS "000t6".
119 05 FILLER PIC A VALUE IS "F".
120 05 FIELD-TYPE-CMMT PIC X VALUE IS ''D".
121 05 CHARACTR-USE PIC A VALUE IS "c",
122 05 FIELD-LOC.
!
Figure 9:3. COBOL Routine Calling Sort/Merge (Sheet 3of 7)
9-10 2270521-9701

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

>0000
>0000

>0002

>000A
20012
>0012
>001A

>001¢
>0024

>0026

>0026
>0028

>0030
>0038
>0038
>003A

>0042

>0044
>0044
>0048
>004¢C
>0050
>0052

22705219701

interfacing to Produclivity Tools

07 BEG-RECRD-POS PIC X{(4) VALUE
07 END-RECRD-POS PIC X{4) VALUE
05 CONDTN-FORCD-CHAR PIC X VALUE

05 FORCD-CHAR PIC X VALUE

05 CONTIN-LIN PIC X VALUE

05 OUFLW-FLD-LEN PIC X(3) VALUE

05 FILLER PIC X(22) VALUE

03 ENDKROD PIC X(44) VALUE
PROCEDURE DIVISION,

MAIN-PROGRAM.
*INITIALIZE SORT/MERGE.

IS
IS
IS
IS
IS

1S "0038".
I1s »oo80".
1S SPACE.
SPACE.
SPACE.
SPACES.

SPACES.
N

COBOL EXAMPLE 3

CALL "SRTINT" USING SORT-CONTROL-BLOCK,

MAX-NO-RECS, STATIS.

IF STATIS NOT EQUAL ZERO GO TO ERRSTRT,

* START THE INPUT SECTION.
OPEN INPUT INFILNAME.
NEXREC.

READ INFILNAME AT END GO TO BEGWRT.

CALL "SENREC'™ USING INFILRCRD,
RECORD-LENGTH, STATIS.

IF STATIS NOT EQUAL ZERO GO TO ERRSEN.

GO TO NEXREC.

*

START THE OUTPUT SECTION.
BEGHWRT.

» »

COBOL EXAMPLE 3

COBOL EXAMPLE 3

COBOL EXAMPLE 3

BEGIN SORT PHASE. SENDING A RECORD LENGTH OF 0 (ALLDONE)
INDICATES THAT THE LAST RECORD HAS BEEN SENT.

CALL "SENREC'™ USING INFILRCRD, ALLDONE, STATIS.

IF STATIS NOT EQUAL ZERC GO TO ERRSEN,

CLOSE INFILMNAME.
CHKSORT. '
CALL "SMSTAT' USING STATIS.

If STATIS NOT EQUAL ZERO GO TO ERRWRT.

* SORT IS DONE.
GO TO END-IT.

ERRSTRT.
DISPLAY ' ERROR IN STRINT CALL.".
MOVE STATIS TO OUTSTAT.
DISPLAY OUTSTAT.
GO TO END-IT.
ERRSEN.

COBOL EXAMPLE 3

COBOL EXAMPLE 3

Figure 9-3. COBOL Routine Calling Sort/Merge (Sheet 4 of 7)

9-11

Interfacing lo Productivily Tools

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:5S OPT=M PAGE 5
LINE DEBUG PG/LN T - e R T T LA LR R
169 >0052 DISPLAY ' ERROR IN SENREC CALL.'.

170 >0056 MOVE STATIS TO OUTSTAT.

171 >005A DISPLAY OUTSTAT.

172 >005€ GO TO END-IT.

173 >0060 ERRWRT.
174 >0060 DISPLAY ' ERROR IN SMSTAT.'.
175 >0064 MOVE STATIS TO QUTSTAT.

176 >0068 DISPLAY OUTSTAT.

177 H o e COBOL EXAMPLE 3
178 >006E END-IT.

179 >006E STOP RUN.

180 222227 END PROGRAM. %% END OF FILE
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=HM PAGE 6
ADDRESS SIZE DEBUG ORDER TYPE NAME

800 FILE INFILNAME

>00286 80 ANS 0 ALPHANUMERIC INFILRCRD

>007A 2 NBS 0 BINARY SIGNED MAX-NO-RECS

>007¢C 2 NBS 0 BINARY SIGNED STATIS

>007€ 5 NSU 0 NUMERIC UNSIGNED OUTSTAT

>0084 2 NBS 0 BINARY SIGNED RECORD-LENGTH

>0086 2 NBS ¢ BINARY SIGNED RECORD-AREA-LENGTH

>0088 P NBS 0 BINARY SIGNED RETES-RECEIVED

>008A 80 ANS 0 ALPHANUMERIC OFILRCRD

>00DA 2 NBS 0 BINARY SIGNED ALLDONE

>000DC 440 GRP 0 GROUP SORT-CONTROL-BLOCK

>000¢ 44 GRP 0 GROUP HEADER

>000C 5 ANS 0 ALPHANUMERIC SEQ

>00E?2 6 ABS 0 ALPHABETIC SORT-TYPE

>00E8 5 NSU 0 NUMERIC UNSIGNED MAX-TOT-CONTL-LEN

>00ED 1 ABS 0 ALPHABETIC ASCND-DSCND

>00F5 1 ANS 0 ALPHANUMERIC COLLATNG-SEQ

>00F6 1 ANS 0 ALPHANUMERIC PRINT-OPTION

>00F7 1 ANS 0 ALPHANUMERIC OUTPUT-OPTION

>00F8 & ANS 0 ALPHANUMERIC OUTPUT-REC-LEN

>Q0FC 2 ANS 0 ALPHANUMERIC VERIFY-OPTHN

>00FE 5 ANS 0 ALPHANUMERIC WRK-SPACE

Figure 9-3. COBOL Routine Calling Sort/Merge (Sheet 5 of 7}

9-12

2270521-9701

>0108
>0108
>010E
>010F
>0110
>0134
>0134
>013A
>0138
>013F
>0143
>0160
>0160
>0166
>0167
>0168
>018¢C
>018¢
>0192
>0193
>0194
>0188
>0188
>01BE

DXCBL
ADDRESS
>01BF
>01C7
>01E4
>01E4
>01EA
>01EB
>01EC
>01EC
>01F0Q
>01F4
>01F5
>01Fé
>01F7
>0210
>0210
>0216
>0217
>0218
>0218
>021¢
>0220
>0221

2270521-9701

-+~

£l

I~

£ W -
D N Y B - I R R . - R i L - Y,)

SIZE

B A RSO = U P e 00 B OR

GRP
ANS
ABS
ABS
ANS
GRP
ANS
ABS
NSU
NSU
ANS
GRP
ANS
ABS
ANS
ANS
GRP
ANS
ABS
ABS
ANS
GRP
ANS
ABS

L.R.Y YY.DDD COMPILED:MM/DD/YY HH:MM:SS

OO0 OoOOOOOOLOoOOCOoOOOOOOOCOO0O

GROUP
ALPHANUMERIC
ALPHABETIC
ALPHABETIC
ALPHANUMERIC
GROUP
ALPHANUMERIC
ALPHABETIC
NUMERIC UNSIGNED
NUMERIC UNSIGNED
ALPHANUMERIC
GROUP
ALPHANUMERIC
ALPHABETIC
ALPHANUMERIC
ALPHANUMERIC
GROUP
ALPHANUMERIC
ALPRABETIC
ALPHABETIC
ALPHANUMERIC
GROUP
ALPHANUMERIC
ALPHABETIC

DEBUG ORDER TYPE

ANS
ANS
GRP
ANS
ANS
ABS
GRP
ANS
ANS
ANS
ANS
ANS
ANS
GRP
ANS
ANS
ABS
GRP
ANS
ANS
ANS
ANS

SO0 O0OO0O0 OO0 OOOOOOOOO

ALPHANUMERIC
ALPHANUMERIC
GROUP
ALPHANUMERIC
ALPHANUMERIC
ALPHABETIC
GROUP
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
GROUP
ALPHANUMERIC
ALPHANUMERIC
ALPHABETIC
GROUP
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC

Interlacing to Productivily Tools

OUT-FILE-SPEC
SEQ
FILE-USE
FILE-TYPE
PATHNAME
CNT-OUT-FILE-SPEC
SEG
FILE-USE
LOG-REC-SIZ
PHY-REC-SIZ
NUM-PHY-REC
WRK-FILE-SPEC
SEQ
FILE-USE
EXPAND-ALLOC-FLG
VOLUME
INPT-FILE-CONTIN
SEQ
FILE-USE
FILE-TYPE
PATHNAME
INPT-FILE-CONTIN
SEQ
FILE-USE

0PT=M PAGE 7
NAME
LOG-SIZE
NUM-SRT-RECS
REFORMAT-DESCRIPTION-0
SEQ
FIELD-TYPE-CMMT
CHARACTR-USE
FIELD-LOC
BEG-RECRD-POS
END-RECRD-POS
CONDTN-FORCD-CHAR
FORCD-CHAR
CONTIN-LIN
OUFLW-FLD-LEN
REFORMAT-DESCRIPTION
SEQ
FIELD-TYPE-CMMT
CHARACTR-USE
FIELD-LOC
BEG-RECRD-POS
END-RECRD-POS
CONDTN-FORCD-CHAR
FORCD-CHAR

Figure 9-3. COBOL Routine Calling Sort/Merge (Sheet 6 of 7)

9-13

Interfacing to Produclivily Tools

>0222
>0223
>023C
>023cC
>0242
>0243
>0244
>0244
>0248
>024¢C
>0240
>024E
>024F
>0268

ANS
ANS
GRP
ANS
ANS
ABS
GRP
ANS
ANS
ANS
ANS
ANS
ANS
ANS

~
R - - i Ny R S Py

o+~

READ ONLY BYTE SIZE =

READ/WRITE BYTE SIZE =

(= ==l = o - T = B B A I]

OVERLAY SEGMENT BYTE SIZE

TOTAL BYTE SIZE =

0 ERRORS

0 WARNINGS

DXCBL
PROGRAM

SENREC

SMSTAT
SRTINT

9-14

ALPHANUMERIC
ALPHANUMERIC
GROUP
ALPHANUMERIC
ALPHANUMERIC
ALPHABETIC
GROUP
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC

>015A

>02EE

>0000

>0048

CONTIN-LIN
OUFLW-FLD-LEN

SEQ

FIELO-TYPE-CMMT

CHARACTR-USE
FIELD-LOC

BEG-RECRD-POS
END-RECRD-POS

REFORMAT-DESCRIPTION-3

CONDTN-FORCD-CHAR

FORCD-CHAR
CONTIN-LIN
OUFLW-FLD-LEN

ENDKROD

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M

USING COUNT
3
1
3

Figure 9-3. COBOL Routine Calling Sort/Merge (Sheet 7 of 7)

PAGE

2270521-9701

Interfacing to Produciivily Tools

The library 3$SMRG.SMLIB contains the required Sort/Merge interface modules. The modules and
their functions are as follows:

Module Function

SATINT Performs the initialization of Sort/Merge before records can be
senl to or received from the Sort/Merge module

SENREC Transmits records from calling module to Sort/Merge

RCVREC Transmits records from Sort/Merge to calling module

SMSTAT Suspends calling tasks until Sort/iMerge completes writing records to
output file

COBINT Contains other modules called by one of the above

IPCBUF Contains buffer for IPC communication

Refer to the DX Sort/Merge User's Guide for a detailed description of these functions, their CALL
statement syntax, and conditions under which each is required. The following link control file
shows how to link the COBOL module shown in Figure 9-3.

FORMAT IMAGE,REPLACE

PROC RCOBOL

DUMMY

INCLUDE .S$$SYSLIB.RCBPRC
TASK CPNP

INCLUDE ,S$$SYSLIB.RCBTSK
INCLUDE .S$$SYSLIB.RCBMPD
INCLUDE EX.CPNP

INCLUDE .S3SMRG.SMLIB.SRTINT
INCLUDE .S$$SMRG.SMLIB,.SENREC
INCLUDE ,S$$SMRG.SMLIB.SMSTAT
INCLUDE .S$$SMRG.SMLIB.COBINT
INCLUDE .S$$SMRG.SMLIB.IPCBUF
END

9.4 DATABASE MANAGEMENT SYSTEM

The Database Management System (DBMS-990) is designed for minicomputer database applica-
tions. DBMS-990 handles data access in a logical format similar to physical documents and
records in daily business transactions. DBMS-9920 allows the user to define and access a central-
ized, integrated data base without the physical data access requirements imposed by conven-
tional file management software. Considerations such as access method, record size, blocking,
and relative field positions are resolved when the database is initially defined. Thus the user can
concentrate fully on the logical data structure needed for interface.

2270521-9701 9.15

Interfacing to Productivily Tools

9.41 DBMS-990 Features

Because the data definitions are independent from the application software, the data base can be
changed without affecting existing programs. DBMS-990 also provides a single, centralized copy
of the data to be used for all application subsystems. (Conventional file management results in
fragmented and/or multiple copies of data, one for each application.) A centralized copy results in
more efficient data storage on disk, uniform processing of data requests, and simplified data base
maintenance. DBMS-890 optionally includes logging and access control.

Security is an optional feature of DBMS-990. Its purpose is to eliminate unauthorized use of the
data base. Password security is provided to control file access. Access authorization is provided
to define the type of access allowed to the data elements of a file for a particular password andfor
user. Each file that requires a password also requires access authorization. For detailed infor-
mation about DBMS-990, refer to the DX 10 Data Base Management System Programmer's Guide.

9.4.2 DBMS.990 User Interface

The primary user interface to DBMS-990 consists of the data manipulation language (DML) and the
data definition language (DDL). DML provides a means to manipulate data base information by
supporting the reading and/or writing of the information. DBMS-990 data can be accessed by
embedding the appropriate DML syntax in a COBOL application program module. (Refer to Figure
9-4). The application program module Is used to construct a call to DBMS-990 that specifies the
functlon to be performed on the data. The Data Base Manager processes the request and returns
the results to the COBOL module. DDL allows the user to describe the DBMS-990 dala base and
the associated data elements. The definition source for the DDL loglcal data base is compiled by
the DDL compiler; the output is stored on disk with the associated data. (Refer to Figure 9-5).

9.43 Linking DBMS-990 and COBOL Modules
The library S$DBMS contains the required DBMS-990 interface modules. The following link control
file may be used to link the COBOL module:

FORMAT IMAGE,REPLACE

PROC RCOBOL

DUMMY

INCLUDE .S$$SYLIB.RCBPRC
TASK GENEO

INCLUDE .S$$SYSLIB.RCBTSK
INCLUDE .S$$SYSLIB,RCBMPD
INCLUDE EX.GENEO

INCLUDE S$$DBMS.SNDMSG
INCLUDE S$$DBMS.COBINT

END
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 1

SOURCE ACCESS NAME: MANUAL.PG.SRC.FIG0904

OBJECT ACCESS NAME: DUMY

LISTING ACCESS NAME: MANUAL.PG.LST.FIG0904

OPTIONS: M

PRINT WIDTH: 80

PAGE SIZE: 55

PROGRAM SIZE (LINES): 1000

Figure 9-4. COBOL Interfacing With DBMS-990 {Sheet 1 of 14)

9-16 2270521-9701

o~

DXcCBL

LINE DEBUG PG/LN

2270521-9701

Interfacing to Productivity Tools

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2

IDENTIFICATION DIVISION.

PROGRAM-1D.

L
*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

GENEALOGY.

P . I T Y Pesteeasiesenerananas

THIS PROGRAM WAS DEVELOPED AS A FUNCTIONAL
DEMONSTRATION TEST FOR TESTING THE DATA BASE
MANAGEMENT SYSTEM.

SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-930.
DATA DIVISION.
WORKING-STORAGE SECTION.

01

01

01

01

01

01

01
01

01
01

ERR-FLG
88 ERR
88 NO-ERR
PERSONS
88 PERSON
88 NO-PERSON
SPOUSES
88 SPOUSE
88 NO-SPOUSE
CHILDREN
88 CHILD
88 NO-CHILD
ACTIVITY
88 ACT-ADD
88 ACT-UPDTE
88 ACT-DELTE
88 QuiIT
ACTION
ANSHER
PSC-TYPE
88 PSC-PERSON
88 PSC-SPOUSE
88 PSC-CHILD
88 NO-PSC
TEMP-NAME
FUNC-LIST.
02 PASSWORD
02 FUNCTION
02 FILE-STAT
02 FILE-NAME
02 Loc1

88 EOL
02 LOCZ
02 KEY-NAME
02 KEY-VALUE

PIC

PIC

PIC

PIC

PIC

PIC
PIC
PIC

PIC

PIC
PIC
PIC
PIC
PIC

PIC
PIC
P1C

29

>

X€20)

X(4)
XX
XX
X4
X4

X&)
X(4)
X300,

VALUE

0.

VALUES 1 THRU 99.

VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

0.

!IYII R
NNII R

IIYII .
HNII R

HYII .
IINII .

HAII .
IIUII .
I|Dll R
IIQII .

llpll .
IISII R
IICII R
H H.

m n
.

non
'IOF" R

ll**ll R

"GENE".
ll****ll .
T
TR
""NAME".

Figure 9-4. COBOL Interfacing With DBMS-990 (Sheet 2 of 14)

917

Interfacing to Productivily Tools

47
48

50
51
52
53
54
55

DXCBL
LINE
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

9-18

01 LINE1-LIST,

02 FILLER PIC X{(7) VALUE "LINE=01",
02 TST-1 PIC X VALUE ''»",
02 FILLER PIC X(16) VALUE "PERSPSEXPDOBPPOB'.
02 FILLER PIC X(16) VALUE "MARDFATHMOTH*s##kx"
02 HR-1 PIC X(4) VALUE '"RLSE",
01 LINE2-LIST.
02 FILLER PIC X(V) VALUE "LINE=02".
02 TST-2 PIC X VALUE ",".
02 FILLER PIC X(16) VALUE "SPOUSSEXSDOBSPOB".
L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:55 OPT=M PAGE 3
DEBUG PG/LN T T
02 FILLER PIC X(4) VALUE "kxkkit,
02 HR-2 PIC X{(4) VALUE “RLSE",
01 LINE3-LIST.
02 FILLER PIC X(7) VALUE "LINE=03".
02 T1ST-3 PIC X VALUE
02 FILLER PIC X{16) VALUE "CHLDCSEXCDOBCPOB'".
02 FILLER PIC X{(4) VALUE "*x&x'',
02 HR-3 PIC X(4) VALUE "RLSE".
01 LINE1-DATA.
02 PERSON-NAME PIC X(30) VALUE SPACES.
02 PERSON-SEX PIC X VALUE SPACES.
02 DATE-OF-BIRTH.
03 PERSON-DOB-MO PIC XX VALUE SPACES.
03 PERSON-DOB~DA PIC XX VALUE SPACES.
03 PERSON-DOB-YR PIC XX VALUE SPACES.

02 PLACE-OF-BIRTH.

03 PERSON-POB-

62 MARITAL-STAT
02 FATHER
02 MOTHER

01 LINE2-DATA.
02 SPOUSE-NAME
02 SPOUSE-SEX
02 DATE-OF-BIRTH.

03 SPOUSE-DOB-
03 SPOUSE-DOB-
03 SPOUSE-DOB-

STATE PIC XXX

PIC X YALUE
PIC X(30) VALUE
PIC X{(30) VALUE

PIC X(30).
PIC X.

MO PI1C XX
DA PIC XX
YR PIC X(&)

02 PLACE-Of-BIRTH.

03 SPOUSE-POB-

STATE PIC XXX

VALUE SPACES.
SPACES.
SPACES.
SPACES.

VALUE SPACES.
VALUE SPACES.
VALUE SPACES.

VALUE SPACES.

Figure 9-4. COBOL Interfacing With DBMS-990 (Sheet 3 of 14)

2270521-9701

DXCBL
LINE
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

>0000
>0000
>0000
>0008
>000E
>0016

>0018

>0032

- >0042

>0046
>0048

>004A
>004A
>004A

>0052
>005¢
>0062
>0072
>0082
>0092

2270521-9701

01

01

Interfacing to Productivily Tools

LINE3-DATA.

02 CHILD-NAME PIC X(30).

02 CHILD-SEX PIC X.

02 DATE-OF-BIRTH.
03 CHILD-DOB-MO PIC XX VALUE
03 CHILD-DOB-DA PIC XX VALUE
03 CHILD-DOB-YR PIC X{4) VALUE

02 PLACE-OF-BIRTH.
03 CHILD-POB-STATE PIC XXX VALUE
DELIM PIC XX VALUE '1/#",

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OQPT=M
DEBUG PG/LN A..

/

SPACES.
SPACES,
SPACES.

SPACES.

PROCEDURE DIVISION.
MAIN SECTION.
MAIN-PROG.

DISPLAY "ENTER PASSWORD" LINE 1 ERASE.

ACCEPT PASSWORD PROMPT.

DISPLAY ' LINE 1 ERASE.

CALL "DBMSYS'" USING FUNC-LIST LINE1-LIST
DELIM DELIM, DELIM DELIM,

IF FILE-STAT NOT = "'wx&"
ADD 1 TO ERR-FLG
DISPLAY '"'OPEN ERR ' LINE 12
FILE-STAT LINE 1 POSITION 18.

IF NO-ERR
PERFORM ACTIVITY UNTIL QUIT.

MOVE "CL" TO FUNCTION.

CALL "DBMSYS'" USING FUNC-LIST FUNC-LIST
DELIM DELIM, DELIM DELIM.

STOP RUN.

ACTIVITY SECTION.
BEGIN.

Figure 9-4,

DISPLAY "FUNCTION: AOD, UPDTE, DELTE, QUIT - A,U,D,Q"

LINE 1 ERASE.

ACCEPY ACTIVITY LINE 1 POSITION 45 PROMPT.

MOVE SPACE TO SPOUSES CHILDREN.

1F ACT-ADD PERFORM ADD-SEC UNTIL NO-
IF ACT-UPDTE PERFORM UPDTE-SEC UNTIL NO-
IF ACT-DELTE PERFORM DELTE-SEC UNTIL NO-
MOVE 0 TO ERR-FLG PSC-TYPE.

PSC.
PSC.
PScC.

COBOL Interfacing With DBMS-990 (Sheet 4 of 14)

919

Interfacing to Productivity Tools

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

DXCBL

LINE
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

9-20

>009¢C
>009¢
>009¢C
>00A2
>00AA

>0082
>008C
>00c4

>0004

>00E4

>00EC
>Q0EC
>00EC
>00F2
>00FA

>0102
>010¢
>0114
>001¢
>0124

DEBUG
>0128

>0130
>0130
>0130
>0136
>013E

>0146
>014E
>0156
>0166

>0176
>017A

ADD-SEC SECTION.
BEGIN.

MOVE "&xx#" TO LOC1 LOCZ.
MOVE "RLSE"™ TO HR-1 HR-2 HR-3.
DISPLAY '"ADD PERSON, SPOUSE, CHILD - P,S,C"
LINE 1 ERASE.
ACCEPT PSC-TYPE LINE 1 POSITION 45 PROMPT.
IF PSC-PERSON PERFORM ADD-PERSON.
IF PSC-SPOUSE PERFORM POSITION-SPOUSE
IF NO-ERR PERFORM ADD-SPOUSE,
IF PSC-CHILD PERFORM POSITION-CHILD
IFf NO-ERR PERFORM ADD-CHILD.
MOVE ¢ TO ERR-FLG.

UPDTE-SEC SECTION.
BEGIN.

MOVE "x#x%'" TO LOC1 LOCZ.

MOVE "HOLD"™ TO HR-1 HR-2 HR-3,

DISPLAY "UPDATE PERSON, SPOUSE, CHILD - P,S,C"
LINE 1 ERASE.

ACCEPT PSC-TYPE LINE 1 POSITION 45 PROMPT.

IF PSC-PERSON PERFORM UPDTE-PERSON.

IF PSC-SPOUSE PERFORM UPDTE-SPOUSE.

IF PSC-CHILD PERFORM UPDTE-CHILD.

MOVE 0 TO ERR-FLG.

L.R.VY YY.DDD COMPILED:MM/DD/YY HH:MM:55 OPT=M PAGE 5

MOVE '"NAME" TO KEY-NAME.

DELTE-SEC SECTION.
BEGIN,

MOVE '"#x%*'" TQ LOCY LOC2.

MOVE "HOLD" TO HR-1 HR-2 HR-3.

DISPLAY '"DELETE PERSON, SPOUSE, CHILD - P,s,cC"
LINE 1 ERASE.

ACCEPT PSC-TYPE LINE 1 POSITION 45.

IF PSC-PERSON PERFORM DELTE-PERSON.

IF PSC-SPOUSE PERFORM POSITION-SPOUSE
IF NO-ERR PERFORM DELTE-SPOUSE.

IF PSC-CHILD PERFORM POSITION-CHILD
IF NO-ERR PERFORM DELTE-CHILD.

MOVE 0 TO ERR-FLG.

MOVE '"NAME' TO KEY-NAME,

Figure 9-4. COBOL Interfacing With DBMS.990 (Sheet 5 of 14)

2270521971

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

>0182
>0182
>0182
>0186
>0188
>018¢C
>0190
>0192

>01B6

>01DA
>01DA
>01DE
>01EQD

>022A
>022A
>0230
>0232

DXCBL

LINE
208
209
210
211
212
213

DEBUG
>0264
>0264
>0268
>026E
>0278

2270521-9701

Interfacing to Productivily Tools

MISC SECTION.
ADD-PERSON.
MOVE SPACES TO LINE1-DATA.
PERFORM DISPLAY-LINE1-FORMAT THRU ACCEPT-LINE1-DATA.
MOVE PERSON-NAME TO KEY-VALUE.
MOVE "AA"™ TO FUNCTION.
PERFORM ACCESS-LINE?Y.
1F ERR
DISPLAY "ERROR ADDING PERSON LINE 01 "™ LINE 22,
FILE-STAT LINE 22 POSITION 35,
ACCEPT ANSWER LINE 22 POSITION 40 PROMPT.
IF MARITAL-STAT NOT = "§"
IF NO-ERR
PERFORM ADD-SPOUSE UNTIL ERR OR NO-SPQUSE.

ADD-SPOUSE.
MOVE SPACES TO LINEZ2-DATA,
PERFORM DISPLAY-LINE2-FORMAT THRU ACCEPT-LINEZ2-DATA.
IF SPOUSE
MOVE "AA'" TO FUNCTION
PERFORM ACCESS-LINEZ
IF ERR
DISPLAY "ERROR ADDING SPOUSE LINE 02 ™ LINE 22,
FILE-STAT LINE 22 POSITION 35,
ACCEPT ANSWER LINE 22 POSITION 40 PROMPT
ELSE
PERFORM ADD-CHILD UNTIL ERR OR NO-CHILD.

ADD-CHILD.
MOVE SPACES TO LINE3-DATA CHILDREN.
PERFORM DISPLAY-LINE3-FORMAT THRU ACCEPT-LINE3-DATA.
IF CHILD
MOVE "AA" TO FUNCTION
PERFORM ACCESS-LINE3
IF ERR
DISPLAY "ERROR ADDING CHILD LINE 03 " LINE 22,
FILE-STAT LINE 22 POSITION 35,
ACCEPT ANSWER LINE 22 POSITION 40 PROMPT.

L.R.V YY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=HM PAGE 6
PG/LN S T T
POSITION-PERSON.
MOVE "RF"™ TO FUNCTION.
DISPLAY "POSITION ON PERSON: ' LINE 4.
ACCEPT KEY-VALUE LINE 4 POSITION 22 PROMPT.
PERFORM ACCESS-LINE1.

Figure 9:.4. COBOL Interfacing With DBMS-990 (Sheet 6 of 14)

9-21

Interfacing lo Produclivily Tools

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

9.22

>Q27¢C
>027cC
>027E

>0288
>02B8
>02BA

>02F4
>02F4
>02FC
>0306
>030A
>030¢C

>0364
>0364
>036C
>0376
>037A
>037E
>0380

POSITION-SPOUSE.

PERFORM POSITION-PERSON.

IF NO-ERR
DISPLAY "POSITION ON SPOUSE: " LINE 4
ACCEPT TEMP-NAME LINE 4 POSITION 22 PROMPT.
IF TEMP-NAME NOT = " "

PERFORM ACCESS-LINEZ UNTIL ERR OR EOL OR
TEMP-NAME = SPQOUSE-NAME.

POSITION-CHILD.
PERFORM POSITION-SPOUSE.
IF NO-ERR
DISPLAY "POSITION ON CHILD: ' LINE 4
ACCEPT TEMP-NAME LINE &4 POSITION 22 PROMPT
IF TEMP-NAME NOT = " ©
PERFORM ACCESS-LINE3 UNTIL ERR OR ECL OR
TEMP-NAME = CHILD-NAME.

UPDTE-PERSON.
DISPLAY '"PERSON'S FULL MNAME: " LINE 3 ERASE.
ACCEPT KEY-VALUE LINE 3 POSITION 22 PROMPT.
MOVE "RF" TO FUNCTION.
PERFORM ACCESS-LINE1.
IF ERR

DISPLAY "ERROR READING PERSON LINE 01 " LINE 24

FILE-STAT LINE 24 POSITION 35

ACCEPT ANSWER LINE 24 POSITION 40 PROMPT
ELSE

PERFORM DISPLAY-LINE1-FORMAT

PERFORM DISPLAY-LINE1-DATA

PERFORM ACCEPT-LINE1-DATA

MOVE "WT' TO FUNCTION

PERFORM ACCESS-LINE1

IF ERR

DISPLAY "ERROR UPDATING PERSON LINE 01 " LINE 24

FILE-STAT LINE 24 POSITION 35
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT.

UPDTE-SPOUSE.
DISPLAY "SPOUSE'S FULL NAME: " LINE 3 ERASE,
ACCEPT KEY-VALUE LINE 3 POSITION 22 PROMPT.
MOVE '"RF" TO FUNCTION.
MOVE '"SPOU' TO KEY-NAME.
PERFORM ACCESS—-LINEZ.
IF ERR OR EOL

DISPLAY “ERROR READING $PQUSE LINE 02 ™ LINE 24

FILE-STAT LINE 24 POSITION 35

ACCEPT ANSWER LINE 24 POSITION 40 PROMPT
ELSE

PERFORM DISPLAY-LINEZ-FORMAT

Figure 9-4. COBOL Interfacing With DBMS.990 (Sheet 7 of 14)

22705219701

DXCBL
LINE
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
2N
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

Interfacing to Productivily Tools

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OQPT=M PAGE 7

PEBUG PG/LN S

>03E9
>03E9
>03F2
>03FC
>0400
>0405
>0407

>0470
>0470
>0478
>0482
>0487
>0489

>04B2
>04B2

2270521-9701

PERFORM DISPLAY-LINE2-DATA

PERFORM ACCEPT-LINEZ-DATA

MOVE “WT" TO FUNCTION

PERFORM ACCESS-LIKE2

I1F ERR
DISPLAY '"ERROR UPDATING SPOUSE LINE 03 " LINE 24
FILE-STAT LINE 24 POSITION 35
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT.

UPDTE-CHILD.
DISPLAY "CHILD'S FULL NAME: " LINE 3 ERASE.
ACCEPT KEY-VALUE LINE 3 POSITION 22 PROMPT.
MOVE "RF'" TO FUNCTION,
MOVE "CHLD" TO KEY-NAME.
PERFORM ACCESS-LINE3.
IF ERR OR EOL
DISPLAY "ERROR READING CHILD LINE 03 " LINE 24,
FILE-STAT LINE 24 POSITION 35,
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT
ELSE
PERFORM DISPLAY-LINE3-FORMAT
PERFORM DISPLAY-LINE3-DATA
PERFORM ACCEPT-LINE3-DATA
MOVE ''WT" TO FUNCTION
PERFORM ACCESS-LINE3
IF ERR
DISPLAY '"ERROR UPDATING CHILD LINE 03 ' LINE 24,
FILE-STAT LINE 24 POSITION 35,
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT.

DELTE-PERSON.

DISPLAY "PERSON'S FULL NAME: " LINE 3 ERASE.

ACCEPT KEY-VALUE LINE 3 POSITION 22 PROMPT.

MOVE "DR"™ TO FUNCTION.

PERFORM ACCESS—-LINE1.

IF ERR
DISPLAY "ERROR READING SPOUSE LINE 02 " LINE 24,
FILE-STAT LINE 24 POSITION 35,
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT.

DELTE-SPOUSE.
IF ERR
DISPLAY '"ERROR READING SPOUSE LINE 02 " LINE 24,
FILE-STAT LINE 24 POSITION 35,
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT

Figure 9-4. COBOL Interfacing With DBMS-990 (Sheet 8 of 14)

9-23

Interfacing to Productivity Tools

309
310
3N
312
313
314
315
316
317
318
319

DXCBL

LINE
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

9:29

ELSE
MOVE '"DL"™ TO FUNCTION
PERFORM ACCESS-LINEZ
IF ERR
DISPLAY "ERROR DELETING SPOUSE LINE 03 " LINE 24
FILE-STAT LINE 24 POSITION 35,
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT
ELSE
MOVE ' " TO LOC1 LOC2
PERFORM DELTE-CHILDREN UNTIL EOL OR ERR.

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:8S OPT=M PAGE 8
DEBUG PG/LN P .
>0530 DELTE-CHILD.
>0530 IF ERR
DISPLAY '"ERROR READING CHILD LINE 03 ' LINE 24,
FILE-STAT LINE 24 POSITION 35,
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT
ELSE
MOVE "DL" TO FUNCTION
PERFORM ACCESS—LINE3
IF ERR
DISPLAY "ERROR DELETING CHILD LINE 03 " LINE 24,
FILE-STAT LINE 24 POSITION 35,
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT.
>058A DELTE-CBILDREN.
>058A MOVE “RF' TO FUNCTION.
>058E PERFORM ACCESS-LINE3.
>0590 IF NO-ERR
MOVE "DL'" TO FUNCTION
PERFORM ACCESS-LINE3,
>05A2 DBMS-ACCESS SECTION.
>05A2 ACCESS-LINE1.
>05A2 CALL "DBMSYS'" USING FUNC-LIST LINE1-LIST
LINE1-LIST LINE2-LIST LINE1-DATA LINEZ-DATA.
>05A5 IF FILE-STAT NOT = ''+«'" ADD 1 TO ERR-FLG.
>05B4 ACCESS-LINEZ.
>05B4 CALL '"DBMSYS'" USING FUNC-LIST LINE1-LIST
LINE2-LIST LINE3-LIST LINEZ-DATA LINE3-DATA.
>0587 IF FILE-STAT NOT = "&%" ADD 1 TO ERR-FLG.
>05Cé6 ACCESS-LINE3.
>05Cé CALL "'DBMSYS' USING FUNC-LIST LINE1-LIST
LINE3-LIST LINE1-DATA LINE3-DATA DELIM.
>05C9 IF FILE-STAT NOT = '*x! ADD 1 TO ERR-FLG.

Figure 9-4. COBOL Interfacing With DBMS-990 (Sheet 9 of 14)

2270521-9701

355
356 >0SDA DISPLAY-LINE1-FORMAT SECTION.
357 >05DA BEGIN,
358 >05DA DISPLAY "PERSON'S FULL NAME:" LINE 3 POSITION 1
359 NSEX: M LINE & POSITION 1
360 "DATE OF BIRTH: " LINE 5 POSITION 1
361 " MONTH: “ LINE 6 POSITION 1
362 " pAY: M LINE 7 POSITION 1
343 M YEAR: M LINE 8 POSITION 1
364 "PLACE OF BIRTH: " LINE 9 POSITION 1
365 " STATE/COUNTRY:" LINE 10 POSITION 1
366 “MARITAL STATUS: " LINE 11 POSITION 1
3467 YFATHER: * LINE 12 POSITION 1
368 "MOTHER: ™ LINE 13 POSITION 1
369
370 >064B ACCEPT-LINE1-DATA SECTION.
371 >064B BEGIN.
372 >064B ACCEPT PERSON-NAME LINE 3 POSITION 22.
373 >0653 IF PERSON-NAME = " »
374 MOVE "N" TO PERSONS
375 ELSE
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:S$S OPT=M PAG
LINE ODEBUG PG/LN A...B..... et ee et aeae ittt aa e e ae e
376 MOVE "Y" TO PERSONS
377 ACCEPT PERSON-SEX LINE & POSITION
378 PERSON-DOB-MO LINE &6 POSITION
379 PERSON-DOB-DA LINE 7 POSITION
380 PERSON-DOB-YR LINE 8 POSITION
381 PERSON-POB-STATE LINE 10 POSITION
382 MARITAL-STAT LINE 11 POSITION
383 FATHER LINE 12 POSITION
384 MOTHER LINE 13 POSITION
385
386 >06B8 DISPLAY-LINE1-DATA SECTION.
387 >06B8 BEGIN.
383 >06BS DISPLAY PERSON-NAME LINE 3 POSITION
389 PERSON-SEX LINE & POSITION
390 PERSON-DOB-MO LINE 6 POSITION
391 PERSON-DOB-DA LINE 7 POSITION
392 PERSON-DOB-YR LINE 8 POSITION
393 PERSON-POB-STATE LINE 10 POSITION
394 MARITAL-STAT LINE 11 POSITION
395 FATHER LINE 12 POSITION
394 MOTHER LINE 13 POSITION
397

Figure 9-4. COBOL Interfacing With DBMS-990 (Sheet 10 of 14)
2270521-9701

interfacing to Productivity Tools

9-25

Interfacing to Productivity Tools

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

DXCBL

LINE
432
433
434
435
436
437
438
439
440
441

9-26

>070F
>070F

>0760
>0760
>0768

>07AD
>07AD

>07E8
>07&8

DEBUG

>083A
>083A
>0842

DISPLAY-LINE2-FORMAT.
DISPLAY "SPOUSE'S FULL NAME:

IISEX: n
“DATE OF BIRTH:
" MONTH: ™
1] DAY: n
" YEAR: "
“PLACE OF BIRTH: "
" STATE/COUNTRY: "

ACCEPT-LINEZ2-DATA.
ACCEPT SPOUSE-NAME
IF SPOUSE-NAME = " "
MOVE "N'' TO SPOUSES
ELSE
MOVE "'¥" TO SPOUSES
ACCEPT SPOUSE-SEX
SPOUSE-DOB-MO
SPOUSE-DOB-DA
SPOUSE-DOB-YR
SPOUSE-POB-STATE

DISPLAY-LINEZ2-DATA.

DISPLAY SPOUSE-NAME
SPOUSE-SEX
SPOUSE-DOB-MO
SPOUSE-DOB-DA
SPOUSE-DOB-YR
SPOUSE-POB-STATE

DISPLAY-LINE3-FORMAT.
DISPLAY “CHILD'S FULL NAME:
“HSEX: "
“DATE OF BIRTH: *

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM

" LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

-0 00 ~ 0w

POSITION 1 ERASE

POSITION
POSITION
POSITION
POSITION
POSITION
POSITION
0 POSITION

— et e ok amh R -
-

LINE 3 POSITION 22.

22
22
22
22

22.

22
22
22
22
22

22.

POSITION 1 ERASE

1

PG/LN Ai.iBiiuitiiunesonenarsonomntssmnssnnnnnsnansssnsnanannannans

" YEAR: "
" PLACE OF BIRTH: "
" STATE/COUNTRY: "

ACCEPT-LINE3-DATA.
ACCEPT CHILD-NAME
IF CHILD-NAME = " ©
MOVE "N'" TO CHILDREN

LINE 4 POSITION
LINE 6 POSITICN
LINE 7 POSITION
LINE 8 POSITION
LINE 10 POSITION
LINE 3 POSITION
LINE 4 POSITION
LINE 6 POSITION
LINE 7 POSITION
LINE 8 POSITION
LINE 10 POSITION
" LINE 3
LINE & POSITION 1
LINE 5 POSITION
iSS OPT=M PAG
LINE é POSITION
LINE 7 POSITION
LINE 8 POSITION
LINE 9 POSITION
LINE 10 POSITION

LINE 3 POSITION 22.

Figure 9-4. COBOL Interfacing With DBMS-990 (Sheet 11 of 14)

2270521-9701

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

DXCBL
ADDRESS

>0024

>002¢

>002E

>0030

>0032

>0034

>0036

>0038

2270521-9701

>0887
>0887

MOVE "Y" TO CHILDREN
ACCEPT CHILD-SEX

CHILD-DOB-MO
CHILD-DOB-DA
CHILD-DOB-YR
CHILD-POB-STATE

ODISPLAY-LINE3-DATA.

DISPLAY CHILD-NAME

CHILD-DOB-MO
CHILD-DOB-DA
CHILD-DOB-YR
CHILD-POB-STAT

Z2ZZZ2Z END PROGRAM.

SIZE

2

L.R.V YY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M

DEBUG ORDER TYPE

NSU

ANS

ANS

ANS

ANS

ANS

ANS

ANS

0
0
0

COO0O O (= = =] Qoo oo

L= T =]

COoOOoOoOO

NUMERIC UNSIGNED

CONDITION-NAME
CONDITION-NAME

ALPHANUMERIC
CONDITION-NAME
CONDITION-NAME

ALPHANUMERIC
CONDITION-NAME
CONDITION-NAME

ALPHANUMERIC
CONDITION-NAME
CONDITION-NAME

ALPHANUMERIC

CONDITION-NAME
CONDITION-NAME
CONDITION-NAME
CONDITION-NAME

ALPHANUMERIC

ALPHANUMERIC

ALPHANUMERIC

CONDITION-NAME
CONDITION-NAME
CONDITION-NAME
CONDITION-NAME

LINE
LINE
LINE
LINE
LINE

= 00 = O

LINE
LINE
LINE
LINE
LINE

- 00~ O~ W

NAME

ERR-FLG
ERR
NO-ERR

PERSONS
PERSON
NO-PERSON

SPOUSES
SPOUSE
NO-SPOUSE

CHILDREN
CHILD
NO-CHILD

ACTIVITY
ACT-ADD
ACT-UPDTE
ACT-DELTE
QuUIT

ACTION

ANSWER

PSC-TYPE

PSC-PERSON
PSC-SPOUSE

PSC-CHILD
NO-PSC

interfacing lo Produclivity Tools

POSITION
POSITION
POSITION
POSITION
POSITION

POSITION
POSITION
POSITION
POSITION
POSITION
k END

Figure 8-4. COBOL Interfacing With DBMS-990 (Sheet 12 of 14)

22
22
22
22
22.

22
22
22
22
22.
OF FILE

PAGE 1

9-27

interfacing to Productivity Tools

>003A

>004E
>004E
>0052
>0054
>0056
>005A

>005E
>0062
>0066

>0084
>0088
>00AC

>0080
>0087
>00cc

>0000
>0007

DXCBL
ADDRESS
>Q0EC

>00F0
>00F0
>010E
>010F
>010F
>0111
>0113
>0117
>0117
>011A
>0118
>0139

9-28

S12

10
3

N N

E
4

3
0

O D =W NN D=

ANS 0 ALPHANUMERIC TEMP-NAME
GRP 0 GROUP FUNC-LIST
ANS 0 ALPHANUMERIC PASSWORD
ANS 0 ALPHANUMERIC FUNCTION
ANS 0 ALPHANUMERIC FILE-STAT
ANS 0 ALPHANUMERIC FILE-NAME
ANS 0 ALPHANUMERIC Loc1
0 CONDITION-NAME EOL
ANS 0 ALPHANUMERIC Locz
ANS 0 ALPHANUMERIC KEY-NAME
ANS 0 ALPHANUMERIC KEY-VALUE
GRP 0 GROUP LINE1-LIST
ANS 0 ALPHANUMERIC TST-1
ANS 0 ALPHANUMERIC HR-1
GRP 0 GROUP LINE2-LIST
ANS 0 ALPHANUMERIC TST-2
ANS 0 ALPHANUMERIC HR-2
GRP 0 GROUP LINE3-LIST
ANS 0 ALPHANUMERIC TST-3
L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 12
DEBUG ORDER TYPE NAME
ANS 0 ALPHANUMERIC HR-3
GRP 0 GROUP LINE1-DATA
ANS 0 ALPHANUMERIC PERSON-NAME
ANS 0 ALPHANUMERIC PERSON-SEX
GRP 0 GROUP DATE-OF-BIRTH
ANS 0 ALPHANUMERIC PERSON-DOB-MO
ANS 0 ALPHANUMERIC PERSON-DOB-DA
ANS 0 ALPHANUMERIC PERSON-DOB-YR
GRP 0 GROUP PLACE-OF-BIRTH
ANS 0 ALPHANUMERIC PERSON-POB-STATE
ANS 0 ALPHANUMERIC MARITAL-STAT
ANS 0 ALPHANUMERIC FATHER
ANS 0 ALPHANUMERIC MOTHER

Figure 9-4. COBOL Interfacing With DBMS-990 (Sheet 13 of 14)

2270521-9701

Interfacing to Productivily Tools

>0158 42 GRP 0 GROUP LINE2-DATA
>0158 30 ANS 0 ALPRANUMERIC SPOUSE-NAME
>0176 1 ANS 0 ALPHANUMERIC SPOUSE-SEX
>0177 8 GRP 0 GROUP DATE-OF-BIRTH
>0177 2 ANS 0 ALPHANUMERIC SPOUSE-DOB-MO
>0179 2 ANS 0 ALPHANUMERIC SPOUSE~DOB-DA
>0178 4 ANS 0 ALPHANUMERIC SPOUSE-DOB-YR
>017F 3 GRP 0 GROUP PLACE-OF-BIRTH
>017F 3 ANS 0 ALPHANUMERIC SPOUSE-POB-STATE
>0182 42 GRP 0 GROUP LINE3-DATA
>0182 30 ANS 0 ALPHANUMERIC CHILD-NAME
>01A0 1 ANS 0 ALPHANUMERIC CHILD-SEX
>01A1 8 GRP 0 GROUP DATE-OF-BIRTH
>01M1 2 ANS 0 ALPHANUMERIC CHILD-DOB-MO
>01A3 2 ANS 0 ALPHANUMERIC CHILD-DOB-DA
>01A5 4 ANS 0 ALPRANUMERIC CHILD-DOB-YR
>201A9 3 GRP 0 GROUP PLACE-OF-BIRTH
>01A9 3 ANS 0 ALPHRANUMERIC CHILD-POB-STATE
>01AC 2 ANS 0 ALPHANUMERIC DELIM
READ ONLY BYTE SIZE = >1094
REAO/WRITE BYTE S$IZE = >0208
OVERLAY SEGMENT BYTE SIZE = >0000
TOTAL BYTE SIZE = >129C
0 ERRORS
0 WARNINGS
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 13
PROGRAM USING COUNT
DBMSYS 6

Figure 9-4. COBOL Interfacing With DBMS-390 (Sheet 14 of 14)

22705219701 9-29

Interfacing to Productivily Tools

FILE=GENE,LINES=600
ID=NAME=CH/30,VOL=100
LINE=01
FIELD=PERS=CH/30
FIELD=PSEX=CH/1
GROUP=PDOB
FIELD=PMO =CH/2
FIELD=PDA =CH/2
FIELD=PYR =CH/4
ENDG
FIELD=PPOB=CH/3
FIELD=MARD=CH/1
FIELD=FATH=CH/30
FIELD=MOTH=CH/30
ENDL

LINE=02
FIELD=SPOU=CH/30
FIELD=SSEX=CH/1
GROUP=SDOB
FIELD=SMO =CH/2
FIELD=SDA =CH/2
FIELD=SYR =CH/4
ENDG
FIELD=SPOB=CH/3
ENDL

LINE=03
FIELD=CHLD=CH/30
FIELD=CSEX=CH/1
GROUP=CDOB
FIELD=CMO =CH/?2
FIELD=CDA =CH/2
FIELD=CYR =CH/4
ENDG
FIELD=CPOB=CH/3
ENDL
SECONDARY-REFERENCES
SPOU=VOL=100
SPOU=VOL=100

END. (FORMAT,SECL)

Figure 9-5. Data Definition Language (DDL) File

9:30

2270521-9701

interfacing to Productivity Tools

9.5 QUERY-990

The Query-990 software package provides a convenient and efficient means of retrieving data from
a DBMS-990 database file. Query-990 enables you to gather, modify, and review data without
wriling a program.

The Query-990 language is an Engtish-like nonprocedural language with statements composed of
several clauses. The clauses allow you to specify the content and format of each line, as well as
complex conditions that a database record or line must meet to be qualified for output. Totals,
counts, or averages can be performed on output fields; default columnar headings and user-
defined headings are supported.

When the Query-990 language is used, a complex report may be specified in a few lines, whereas
an application program to obtain the same report can require several hundred lines. Refer to the
Query-990 User's Guide for adetailed explanation of Query-930.

You can access Query-990 from COBOL programs through a set of assembly language
subroutines that interface between the Query-990 processor and the application task. The fol-
lowing subroutines can be linked to the calling task.

. QCOMP — Compiles, loads, and prepares a Query-390 statement for execution. The
Query-990 statement is passed from the application task as an array of characters.

. QINIT — Loads and prepares a Query-990 statement for execution that has already been
compiled {using QCOMPILE) and stored as an object tile.

. QEXEC — Executes a Query-990 statement started by QCOMP or QINIT and lists the
results to an output file.

s QRECV — Processes one cycle of a Query-990 statement. For example, if the Query-990
is alist function, QRECV returns one logical report line.

o QSEND — Resets and sends change data values using the contents of the data buffer.

. QCLR — Reinitializes the Query-990 processor for a particular Query-990 statement
(a clearing function).

. QEND — Terminates the Query-990 processor for a particular Query-990 statement.

2270521-9701 9.39

Interfacing to Productivity Tools

These routines are contained on the library SSQUERY. The following link control file shows how to
link the COBOL module in Figure 9-6.

FORMAT IMAGE,REPLACE
LIBRARY .SCI990.S$S0BJECT
PROC RcCOBOL

DUMMY

INCLUDE ,S$$S5YSLIB.RCBPRC
TASK CTEST

INCLUDE .S$$SYSLIB.RCBTSK
INCLUDE .S$$SYSLIB.RCBMPD
INCLUDE EX.CTEST

INCLUDE S$$QUERY.COBINT
INCLUDE S$$QUERY.PLIOBJ

END

ONCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:$S OPT=M PAGE 1
SOURCE ACCESS NAME: MANUAL.PG.SRC.FIG0906
OBJECT ACCESS NAME: DUMY

LISTING ACCESS NAME: MANUAL .PG.LST.FIG0906
OPTIONS: M

PRINT WIDTH: 80

PAGE SIZE: 55

PROGRAM SIZE (LINES): 1000

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:S5 OPT=M PAGE 2
LINE DEBUG PG/LN T srrsrrstariaesa s aan
IDENTIFICATION DIVISION.

PROGRAM-ID. QUERY.
* THIS PROGRAM WAS DEVELOPED AS A FUNCTIONAL
* DEMONSTRATION TEST TO CHECX INTERFACING
* COBOL APPLICATIONS WITH QUERY,

ENVIRONMENT DIVISION.

CONFIGURATION SECTION

SOURCE~COMPUTER. TI-990.

OBJECT-COMPUTER. TI1-990,

DATA DIVISION,

WORKING-STORAGE SECTION.

L OoOVRNOVM SN -

JE Y

Figure 9-6. COBOL Module Linked to Query (Sheet 1 of 3)

9.32 2270521-9701

30 >0000
31 >0000

33 >0000

38 >»>0002
40 >000cC
41 >0010
42 >0018

44 >001E

54 >0046
55 >0048

2270521-9701

interfacing to Productivity Tools

01 QUERY-NUMBER PIC 9(5) COMP-1 VALUE 1.
61 RESULT-STATUS PIC 9(5) COMP-1.
01 STATEMENT-LENGTH PIC 9(5) COMP-1 VALUE 36.
01 RESULT-CODE PIC XX.
01 QUERY-STATEMENT PIC X(80) VALUE

"LIST PERS SPOU CHLD FROM GENE NO HEADER .
01 EXTEND-FILE PIC 9(5) COMP-1.
01 FORMAT-TEXT PIC 9(5) COMP-1 VALUE 1.
01 LIST-TEXT PIC 9(5) COMP-1 VALUE 1.
iy} PAGELENGTH PIC 9(5) COMP-1 VALUE 60,
01 PAGEWIDTH PIC 9(5) COMP-1 VALUE 80.
01 LIST-PN PIC X(48) VALUE "D.LIST ",
01 ALT-COLLATING-PN PIC X{48) VALUE " *,
01 PASSWORD PIC X(4) VALUE "DBMS".
01 CHAR-NUM PIC X(6).
01 X PIC X.

PROCEDURE DIVISION.
MAIN SECTION.
BEGIN.

CALL "QCOMP" USING QUERY-NUMBER, RESULT-STATUS,
RESULT-CODE, QUERY-STATEMENT, STATEMENT-LENGTH,
PASSWORD, FORMAT-TEXT, LIST-TEXT, LIST-PN,
PAGELENGTH, PAGEWIDTH, ALT-COLLATING-PN,

DISPLAY '"RESULT STATUS FROM QCOMP = "

LINE 3 POSITION 1 ERASE,.
MOVE RESULT-STATUS TO CHAR-NUM.
DISPLAY CHAR-NUM LINE 3 POSITION 30,
ACCEPT X LINE 24.

IF RESULT-STATUS = 0
MOVE 1 TO EXTEND-FILE
CALL "QEXEC" USING QUERY-NUMBER, RESULT-STATUS,
RESULT-CODE, LIST-PN, EXTEND-FILE
DISPLAY "RETURN STATUS AFTER QEXEC = "
LINE 3 POSITION 1 ERASE
MOVE RESULT-STATUS TO CHAR-NUM
DISPLAY CHAR-NUM LINE 3 POSITION 30
ACCEPT X LINE 24.

CALL "QEND " USING QUERY-NUMBER, RESULT-STATUS.
STOP RUN.
222277 END PROGRAM. *%% END OF FILE

Figure 9-6. COBOL Module Linked to Query (Sheet 2 of 3)

9-33

Interfacing to Productivily Tools

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3
ADDRESS SIZE ©OEBUG ORDER TYPE NAME
>002A 2 NBS 0 BINARY SIGNED QUERY-NUMBER
>002¢ 2 NBS 0 BINARY SIGNED RESULT-STATUS
>002€ 2 NBS 0 BINARY SIGNED STATEMENT-LENGTH
>0030 2 ANS 0 ALPHANUMERIC RESULT-CODE
>0032 80 ANS 0 ALPHANUMERIC QUERY-STATEMENT
>0082 2 NBS 0 BINARY SIGNED EXTEND-FILE
>0084 2 NBS 0 BINARY SIGNED FORMAT-TEXT
>0086 2 NBS 0 BINARY SIGNED LIST-TEXT
>0038 2 NBS 0 BINARY SIGNED PAGELENGTH
>008A 2 NBS 0 BINARY SIGNED PAGEWIDTH
>008¢ 48 ANS 0 ALPHANUMERIC LIST-PN
>008C 48 ANS 0 ALPHANUMERIC ALT-COLLATING-PN
>00EC 4 ANS 0 ALPHANUMERIC PASSWORD
>00F0 6 ANS 0 ALPHANUMERIC CHAR-NUM
>00F6 1 ANS 0 ALPHANUMERIC X
READ ONLY BYTE SIZE = >0156
READ/WRITE BYTE SIZE = >0112

OVERLAY SEGMENT BYTE SIZE = >0000

TOTAL BYTE SIZE = >0268
0 ERRORS
0 WARNINGS
DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4
PROGRAM USING COUNT
QCOMP 12
QEND 2
QEXEC 5

Figure 9-6. COBOL Module Linked to Query (Sheet 3 of 3)

9-34 2270521-9701

Interfacing to Productivity Tools

9.6 COMMUNICATIONS

Several allernative communications packages are available to the 990 user. Depending on your
application, you can generate a custom system to meet your needs.

9.7 COMMUNICATION EQUIPMENT

The communications modules available include the communications interface module, a choice
of an asynchronous or synchronous modem, and an accessory auto-call unit (ACU). The communi-
cations interface module can be used with Belldata sets, which include modems and data-access
arrangements.

The communications interface module provides an RS-232C interface with full modem control
signals for asynchronous and synchronous modems. Baud rates of 75, 110, 150, 200, 300, 1200,
2400, 4800, and 9600 meet almost any communications requirement. Character size Is selected
from 5 to 9 bits with programmable parity (odd, even, or none). Other features include line
break detection/generation, a 250-millisecond timer, programmable SYN, DLE stripping,
false-bit-start-bit detection, stop-bit selection, and programmable self-test. :

9.8 3780 EMULATOR COMMUNICATIONS SOFTWARE

The 3780 emulator communications software package provides a means of remote job entry (RJE)
communications with an IBM 360/370 host computer or another 3780 emulator. Communication
consists of exchanging data files between master and siave stations over leased point-io-point or
switched telephone lines.

Using the 3780 emulator, systems running DX10 can serve as satellite and/or central stations in
distributed processing networks, or can be used to handle RJE or batch data entry for processing
by a host. Remote stations can be dialed manually or automatically with an optional ACU and a
modem. Remote stations can also be operated in an unattended mode as a called station in a dis-
tributed network.

T1 3780 emulator communications software emulates the operation of the IBM 3780 Data Commun-
ications Terminal. However, unlike the IBM 3780, ihe source and destination of the transferred
files using the T| 3780 emulator are not restricted to the card reader/punch and line printer. Any
file, input device, or output device available to your system can be used for input or output.

9.35/9-36

10

Using SCI Command Procedures
to Execute COBOL Tasks

10.1 GENERAL

This section introduces the application of custom tailored SCl command procedures (procs) to the
execution of COBOL tasks. It does not attempt to provide materials sufficient for the general mas-
tery of writing and using SCl procedures: this has been addressed in the DX710 Systems
Programmer's Guide and the tutorial SCI: A Self-Study Approach to Writing Command Procedures
and Batch Streams. Here the objective is to give you, the COBOL programmer, an understanding
of the applicability of procs to your work, and to provide you with specific examples you may be
able o adapt and use directly. if you have already had some experlence with SCI procs, this chap-
ter may serve as a review.

10.2 SCICOMMAND PROCEDURE ELEMENTS

SCI, the System Command Interpreter which runs under the DX10 Operating System, can be tai-
lored for specific applications by writing and using new commands. Adding a new command
_involves writing a command procedure. This command procedure is a sequence of SC| siatements
stored in a file under a user-specified name and executed by SCl each time that name is invoked.
The command procedure constitutes a new SCl command in its own right.

A command procedure is composed of SCl commands and their associated parameters, SCI
primitives, and special statements that produce interactive field prompts at the user terminal. In
some cases, the procedures may also invoke a user-supplied command processor.

SCI primitives are system routines which con